These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 2207125
21. Oxidation of bilirubin in the brain-further characterization of a potentially protective mechanism. Hansen TW, Allen JW, Tommarello S. Mol Genet Metab; 1999 Nov; 68(3):404-9. PubMed ID: 10562468 [Abstract] [Full Text] [Related]
22. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Korge P, Calmettes G, Weiss JN. Biochim Biophys Acta; 2015 Nov; 1847(6-7):514-25. PubMed ID: 25701705 [Abstract] [Full Text] [Related]
23. Membrane potential-related effect of calcium on reactive oxygen species generation in isolated brain mitochondria. Komary Z, Tretter L, Adam-Vizi V. Biochim Biophys Acta; 2010 Nov; 1797(6-7):922-8. PubMed ID: 20230776 [Abstract] [Full Text] [Related]
24. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Han D, Canali R, Rettori D, Kaplowitz N. Mol Pharmacol; 2003 Nov; 64(5):1136-44. PubMed ID: 14573763 [Abstract] [Full Text] [Related]
26. Pathways of hydrogen peroxide generation in guinea pig cerebral cortex mitochondria. Zoccarato F, Cavallini L, Deana R, Alexandre A. Biochem Biophys Res Commun; 1988 Jul 29; 154(2):727-34. PubMed ID: 3401232 [Abstract] [Full Text] [Related]
27. Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement. Paim BA, Velho JA, Castilho RF, Oliveira HC, Vercesi AE. Free Radic Biol Med; 2008 Feb 01; 44(3):444-51. PubMed ID: 17991444 [Abstract] [Full Text] [Related]
28. H2O2 generation is decreased by calcium in isolated brain mitochondria. Komary Z, Tretter L, Adam-Vizi V. Biochim Biophys Acta; 2008 Feb 01; 1777(7-8):800-7. PubMed ID: 18522799 [Abstract] [Full Text] [Related]
29. Kinetics of hydroperoxide degradation by NADP-glutathione system in mitochondria. Kurosawa K, Shibata H, Hayashi N, Sato N, Kamada T, Tagawa K. J Biochem; 1990 Jul 01; 108(1):9-16. PubMed ID: 2229015 [Abstract] [Full Text] [Related]
30. Selective effects on catalysis by the multiple forms of monoamine oxidase produced by interactions of acidic phospholipids with mitochondrial membranes. Buckman TD, Eiduson S, Sutphin MS, Chang R. J Biol Chem; 1983 Jul 25; 258(14):8670-6. PubMed ID: 6863305 [Abstract] [Full Text] [Related]
31. Generation of hydrogen peroxide by cerebral-cortex synaptosomes. Stimulation by ionomycin and plasma-membrane depolarization. Zoccarato F, Deana R, Cavallini L, Alexandre A. Eur J Biochem; 1989 Mar 15; 180(2):473-8. PubMed ID: 2924776 [Abstract] [Full Text] [Related]
32. Improvement of mouse brain mitochondrial function after deprenyl treatment. Czerniczyniec A, Bustamante J, Lores-Arnaiz S. Neuroscience; 2007 Jan 19; 144(2):685-93. PubMed ID: 17084986 [Abstract] [Full Text] [Related]
33. Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Yoshino S, Hara A, Sakakibara H, Kawabata K, Tokumura A, Ishisaka A, Kawai Y, Terao J. Nutrition; 2011 Jan 19; 27(7-8):847-52. PubMed ID: 21371861 [Abstract] [Full Text] [Related]
34. Stimulation of porphyrinogen oxidation by mercuric ion. II. Promotion of oxidation from the interaction of mercuric ion, glutathione, and mitochondria-generated hydrogen peroxide. Woods JS, Calas CA, Aicher LD. Mol Pharmacol; 1990 Aug 19; 38(2):261-6. PubMed ID: 2385233 [Abstract] [Full Text] [Related]
35. In vitro biotransformation of the selective serotonin reuptake inhibitor citalopram, its enantiomers and demethylated metabolites by monoamine oxidase in rat and human brain preparations. Kosel M, Gnerre C, Voirol P, Amey M, Rochat B, Bouras C, Testa B, Baumann P. Mol Psychiatry; 2002 Aug 19; 7(2):181-8. PubMed ID: 11840311 [Abstract] [Full Text] [Related]
36. The Ca2+- and reduced nicotinamide adenine dinucleotide phosphate-dependent hydrogen peroxide generating system is induced by thyrotropin in porcine thyroid cells. Carvalho DP, Dupuy C, Gorin Y, Legue O, Pommier J, Haye B, Virion A. Endocrinology; 1996 Mar 19; 137(3):1007-12. PubMed ID: 8603567 [Abstract] [Full Text] [Related]
37. Qualitative alteration in substrate specificity of mitochondrial monoamine oxidase in brain. Moskvitina TA, Kamyshanskaya NS, Kaverina LP, Gorkin VZ. J Neurochem; 1976 Jan 19; 26(1):209-10. PubMed ID: 1255173 [No Abstract] [Full Text] [Related]
38. Influence of reactive oxygen species production by monoamine oxidase activity on aluminum-induced mitochondrial permeability transition. De Marchi U, Mancon M, Battaglia V, Ceccon S, Cardellini P, Toninello A. Cell Mol Life Sci; 2004 Oct 19; 61(19-20):2664-71. PubMed ID: 15526171 [Abstract] [Full Text] [Related]
39. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Santos LRB, Muller C, de Souza AH, Takahashi HK, Spégel P, Sweet IR, Chae H, Mulder H, Jonas JC. Mol Metab; 2017 Jun 19; 6(6):535-547. PubMed ID: 28580284 [Abstract] [Full Text] [Related]
40. The action of the glutathione transferase substrate, 1-chloro-2,4-dinitrobenzene on synaptosomal glutathione content and the release of hydrogen peroxide. Zoccarato F, Cavallini L, Deana R, Alexandre A. Arch Biochem Biophys; 1990 Nov 01; 282(2):244-7. PubMed ID: 2241148 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]