These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 22074648

  • 1. Mathematical model using non-uniform flow distribution for dynamic protein breakthrough with membrane adsorption media.
    Schneiderman S, Varadaraju H, Zhang L, Fong H, Menkhaus TJ.
    J Chromatogr A; 2011 Dec 23; 1218(51):9121-7. PubMed ID: 22074648
    [Abstract] [Full Text] [Related]

  • 2. Zonal rate model for stacked membrane chromatography. I: characterizing solute dispersion under flow-through conditions.
    Francis P, von Lieres E, Haynes CA.
    J Chromatogr A; 2011 Aug 05; 1218(31):5071-8. PubMed ID: 21703630
    [Abstract] [Full Text] [Related]

  • 3. Breakthrough performance of plasmid DNA on ion-exchange membrane columns.
    Montesinos-Cisneros RM, Olivas Jde L, Ortega J, Guzmán R, Tejeda-Mansir A.
    Biotechnol Prog; 2007 Aug 05; 23(4):881-7. PubMed ID: 17567039
    [Abstract] [Full Text] [Related]

  • 4. Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode.
    To BC, Lenhoff AM.
    J Chromatogr A; 2011 Jan 21; 1218(3):427-40. PubMed ID: 21176838
    [Abstract] [Full Text] [Related]

  • 5. Modelling and simulation of affinity membrane adsorption.
    Boi C, Dimartino S, Sarti GC.
    J Chromatogr A; 2007 Aug 24; 1162(1):24-33. PubMed ID: 17331521
    [Abstract] [Full Text] [Related]

  • 6. Breakthrough performance of linear-DNA on ion-exchange membrane columns.
    Ma Montesinos-Cisneros R, Ortega J, Guzmán R, Tejeda-Mansir A.
    Bioprocess Biosyst Eng; 2006 Jul 24; 29(2):91-8. PubMed ID: 16770595
    [Abstract] [Full Text] [Related]

  • 7. Modeling of protein breakthrough performance in cryogel columns by taking into account the overall axial dispersion.
    Yun J, Kirsebom H, Galaev IY, Mattiasson B.
    J Sep Sci; 2009 Aug 24; 32(15-16):2601-7. PubMed ID: 19630009
    [Abstract] [Full Text] [Related]

  • 8. Influence of protein adsorption kinetics on breakthrough broadening in membrane affinity chromatography.
    Dimartino S, Boi C, Sarti GC.
    J Chromatogr A; 2011 Jul 01; 1218(26):3966-72. PubMed ID: 21605867
    [Abstract] [Full Text] [Related]

  • 9. An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds.
    Yun J, Jespersen GR, Kirsebom H, Gustavsson PE, Mattiasson B, Galaev IY.
    J Chromatogr A; 2011 Aug 12; 1218(32):5487-97. PubMed ID: 21742336
    [Abstract] [Full Text] [Related]

  • 10. Protein adsorption-dependent electro-kinetic pore flow: modeling of ion-exchange electrochromatography with an oscillatory transverse electric field.
    Yuan W, Zhao YP, Zhang Q, Sun Y.
    Electrophoresis; 2010 Mar 12; 31(5):944-51. PubMed ID: 20191556
    [Abstract] [Full Text] [Related]

  • 11. Breakthrough model of recombinant human-like collagen in immobilized metal affinity chromatography.
    Wang XJ, Fan DD, Luo YE.
    Appl Biochem Biotechnol; 2009 Aug 12; 158(2):262-76. PubMed ID: 18779935
    [Abstract] [Full Text] [Related]

  • 12. Predictive modeling of protein adsorption along the bed height by taking into account the axial nonuniform liquid dispersion and particle classification in expanded beds.
    Yun J, Lin DQ, Yao SJ.
    J Chromatogr A; 2005 Nov 18; 1095(1-2):16-26. PubMed ID: 16275279
    [Abstract] [Full Text] [Related]

  • 13. Expanded bed adsorption of protein with DEAE Spherodex M.
    Chen WD, Tong XD, Dong XY, Sun Y.
    Biotechnol Prog; 2003 Nov 18; 19(3):880-6. PubMed ID: 12790653
    [Abstract] [Full Text] [Related]

  • 14. Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough.
    Bowes BD, Lenhoff AM.
    J Chromatogr A; 2011 Jul 22; 1218(29):4698-708. PubMed ID: 21683363
    [Abstract] [Full Text] [Related]

  • 15. Chromatography modelling to describe protein adsorption at bead level.
    Gerontas S, Shapiro MS, Bracewell DG.
    J Chromatogr A; 2013 Apr 05; 1284():44-52. PubMed ID: 23433886
    [Abstract] [Full Text] [Related]

  • 16. A validated model for the simulation of protein purification through affinity membrane chromatography.
    Dimartino S, Boi C, Sarti GC.
    J Chromatogr A; 2011 Apr 01; 1218(13):1677-90. PubMed ID: 21168846
    [Abstract] [Full Text] [Related]

  • 17. Computational fluid dynamic simulation of axial and radial flow membrane chromatography: mechanisms of non-ideality and validation of the zonal rate model.
    Ghosh P, Vahedipour K, Lin M, Vogel JH, Haynes C, von Lieres E.
    J Chromatogr A; 2013 Aug 30; 1305():114-22. PubMed ID: 23885666
    [Abstract] [Full Text] [Related]

  • 18. Adsorption of a single protein interacting with multiple ligands: inner radial humps in the concentration profiles induced by non-uniform ligand density distributions.
    Riccardi E, Liapis AI.
    J Sep Sci; 2009 Dec 30; 32(23-24):4059-68. PubMed ID: 19950351
    [Abstract] [Full Text] [Related]

  • 19. Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles.
    Persson P, Baybak O, Plieva F, Galaev IY, Mattiasson B, Nilsson B, Axelsson A.
    Biotechnol Bioeng; 2004 Oct 20; 88(2):224-36. PubMed ID: 15449292
    [Abstract] [Full Text] [Related]

  • 20. Comparison of general rate model with a new model--artificial neural network model in describing chromatographic kinetics of solanesol adsorption in packed column by macroporous resins.
    Du X, Yuan Q, Zhao J, Li Y.
    J Chromatogr A; 2007 Mar 23; 1145(1-2):165-74. PubMed ID: 17289066
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.