These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


447 related items for PubMed ID: 22081859

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes.
    Ye SF, Wu YH, Hou ZQ, Zhang QQ.
    Biochem Biophys Res Commun; 2009 Feb 06; 379(2):643-8. PubMed ID: 19121628
    [Abstract] [Full Text] [Related]

  • 3. Carbon nanotubes and crystalline silica stimulate robust ROS production, inflammasome activation, and IL-1β secretion in macrophages to induce myofibroblast transformation.
    Hindman B, Ma Q.
    Arch Toxicol; 2019 Apr 06; 93(4):887-907. PubMed ID: 30847537
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Multiwalled carbon nanotubes activate NF-κB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells.
    Ravichandran P, Baluchamy S, Sadanandan B, Gopikrishnan R, Biradar S, Ramesh V, Hall JC, Ramesh GT.
    Apoptosis; 2010 Dec 06; 15(12):1507-16. PubMed ID: 20694747
    [Abstract] [Full Text] [Related]

  • 6. Osteopontin enhances multi-walled carbon nanotube-triggered lung fibrosis by promoting TGF-β1 activation and myofibroblast differentiation.
    Dong J, Ma Q.
    Part Fibre Toxicol; 2017 Jun 08; 14(1):18. PubMed ID: 28595626
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Carbon nanotubes and crystalline silica induce matrix remodeling and contraction by stimulating myofibroblast transformation in a three-dimensional culture of human pulmonary fibroblasts: role of dimension and rigidity.
    Hindman B, Ma Q.
    Arch Toxicol; 2018 Nov 08; 92(11):3291-3305. PubMed ID: 30229330
    [Abstract] [Full Text] [Related]

  • 9. Resveratrol inhibits paraquat-induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway.
    He X, Wang L, Szklarz G, Bi Y, Ma Q.
    J Pharmacol Exp Ther; 2012 Jul 08; 342(1):81-90. PubMed ID: 22493042
    [Abstract] [Full Text] [Related]

  • 10. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes.
    Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA.
    Toxicology; 2009 Mar 29; 257(3):161-71. PubMed ID: 19150385
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Ghrelin inhibits interleukin-8 production induced by hydrogen peroxide in A549 cells via NF-kappaB pathway.
    Hou Y, An J, Hu XR, Sun BB, Lin J, Xu D, Wang T, Wen FQ.
    Int Immunopharmacol; 2009 Jan 29; 9(1):120-6. PubMed ID: 19038366
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells.
    Hirano S, Fujitani Y, Furuyama A, Kanno S.
    Toxicol Appl Pharmacol; 2010 Nov 15; 249(1):8-15. PubMed ID: 20800606
    [Abstract] [Full Text] [Related]

  • 16. Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549.
    Srivastava RK, Pant AB, Kashyap MP, Kumar V, Lohani M, Jonas L, Rahman Q.
    Nanotoxicology; 2011 Jun 15; 5(2):195-207. PubMed ID: 20804439
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Signaling pathways controlling the production of inflammatory mediators in response to crystalline silica exposure: role of reactive oxygen/nitrogen species.
    Castranova V.
    Free Radic Biol Med; 2004 Oct 01; 37(7):916-25. PubMed ID: 15336307
    [Abstract] [Full Text] [Related]

  • 19. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung.
    Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, Castellarin C, Debouzy JC.
    Toxicology; 2010 Jun 04; 272(1-3):39-45. PubMed ID: 20381574
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.