These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


96 related items for PubMed ID: 22085110

  • 1. Tandem modular protein-based hydrogels constructed using a novel two-component approach.
    Lv S, Cao Y, Li H.
    Langmuir; 2012 Jan 31; 28(4):2269-74. PubMed ID: 22085110
    [Abstract] [Full Text] [Related]

  • 2. Engineering tandem modular protein based reversible hydrogels.
    Cao Y, Li H.
    Chem Commun (Camb); 2008 Sep 21; (35):4144-6. PubMed ID: 18802510
    [Abstract] [Full Text] [Related]

  • 3. Towards constructing extracellular matrix-mimetic hydrogels: an elastic hydrogel constructed from tandem modular proteins containing tenascin FnIII domains.
    Lv S, Bu T, Kayser J, Bausch A, Li H.
    Acta Biomater; 2013 May 21; 9(5):6481-91. PubMed ID: 23295403
    [Abstract] [Full Text] [Related]

  • 4. Physical hydrogels photo-cross-linked from self-assembled macromers for potential use in tissue engineering.
    Liu B, Lewis AK, Shen W.
    Biomacromolecules; 2009 Dec 14; 10(12):3182-7. PubMed ID: 19919071
    [Abstract] [Full Text] [Related]

  • 5. Reversible hydrogels from self-assembling genetically engineered protein block copolymers.
    Xu C, Breedveld V, Kopecek J.
    Biomacromolecules; 2005 Dec 14; 6(3):1739-49. PubMed ID: 15877401
    [Abstract] [Full Text] [Related]

  • 6. Bioelectrocatalytic hydrogels from electron-conducting metallopolypeptides coassembled with bifunctional enzymatic building blocks.
    Wheeldon IR, Gallaway JW, Barton SC, Banta S.
    Proc Natl Acad Sci U S A; 2008 Oct 07; 105(40):15275-80. PubMed ID: 18824691
    [Abstract] [Full Text] [Related]

  • 7. Biofunctional coatings via targeted covalent cross-linking of associating triblock proteins.
    Fischer SE, Mi L, Mao HQ, Harden JL.
    Biomacromolecules; 2009 Sep 14; 10(9):2408-17. PubMed ID: 19655714
    [Abstract] [Full Text] [Related]

  • 8. Tuning the erosion rate of artificial protein hydrogels through control of network topology.
    Shen W, Zhang K, Kornfield JA, Tirrell DA.
    Nat Mater; 2006 Feb 14; 5(2):153-8. PubMed ID: 16444261
    [Abstract] [Full Text] [Related]

  • 9. Self-assembling protein hydrogels with modular integrin binding domains.
    Mi L, Fischer S, Chung B, Sundelacruz S, Harden JL.
    Biomacromolecules; 2006 Jan 14; 7(1):38-47. PubMed ID: 16398496
    [Abstract] [Full Text] [Related]

  • 10. Bioactive proteinaceous hydrogels from designed bifunctional building blocks.
    Wheeldon IR, Barton SC, Banta S.
    Biomacromolecules; 2007 Oct 14; 8(10):2990-4. PubMed ID: 17887795
    [Abstract] [Full Text] [Related]

  • 11. A facile way to tune mechanical properties of artificial elastomeric proteins-based hydrogels.
    Fang J, Li H.
    Langmuir; 2012 May 29; 28(21):8260-5. PubMed ID: 22554148
    [Abstract] [Full Text] [Related]

  • 12. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism.
    Lu HD, Charati MB, Kim IL, Burdick JA.
    Biomaterials; 2012 Mar 29; 33(7):2145-53. PubMed ID: 22177842
    [Abstract] [Full Text] [Related]

  • 13. Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization.
    Polizzotti BD, Fairbanks BD, Anseth KS.
    Biomacromolecules; 2008 Apr 29; 9(4):1084-7. PubMed ID: 18351741
    [Abstract] [Full Text] [Related]

  • 14. Protein engineering in the development of functional hydrogels.
    Banta S, Wheeldon IR, Blenner M.
    Annu Rev Biomed Eng; 2010 Aug 15; 12():167-86. PubMed ID: 20420519
    [Abstract] [Full Text] [Related]

  • 15. IS911 transposition is regulated by protein-protein interactions via a leucine zipper motif.
    Haren L, Normand C, Polard P, Alazard R, Chandler M.
    J Mol Biol; 2000 Feb 25; 296(3):757-68. PubMed ID: 10677279
    [Abstract] [Full Text] [Related]

  • 16. Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation.
    Dooley K, Bulutoglu B, Banta S.
    Biomacromolecules; 2014 Oct 13; 15(10):3617-24. PubMed ID: 25226243
    [Abstract] [Full Text] [Related]

  • 17. Intein-triggered artificial protein hydrogels that support the immobilization of bioactive proteins.
    Ramirez M, Guan D, Ugaz V, Chen Z.
    J Am Chem Soc; 2013 Apr 10; 135(14):5290-3. PubMed ID: 23509910
    [Abstract] [Full Text] [Related]

  • 18. Small globular protein motif forms particulate hydrogel under various pH conditions.
    Fang J, Zhang X, Cai Y, Wei Y.
    Biomacromolecules; 2011 May 09; 12(5):1578-84. PubMed ID: 21413697
    [Abstract] [Full Text] [Related]

  • 19. The amino terminal regions of proBNP and proANP oligomerise through leucine zipper-like coiled-coil motifs.
    Seidler T, Pemberton C, Yandle T, Espiner E, Nicholls G, Richards M.
    Biochem Biophys Res Commun; 1999 Feb 16; 255(2):495-501. PubMed ID: 10049737
    [Abstract] [Full Text] [Related]

  • 20. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper.
    Lavigne P, Crump MP, Gagné SM, Hodges RS, Kay CM, Sykes BD.
    J Mol Biol; 1998 Aug 07; 281(1):165-81. PubMed ID: 9680483
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.