These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, O'Hagan DT. J Control Release; 2006 Feb 21; 110(3):566-73. PubMed ID: 16360956 [Abstract] [Full Text] [Related]
4. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Jiang W, Gupta RK, Deshpande MC, Schwendeman SP. Adv Drug Deliv Rev; 2005 Jan 10; 57(3):391-410. PubMed ID: 15560948 [Abstract] [Full Text] [Related]
5. Cationic microparticles are a potent delivery system for a HCV DNA vaccine. O'Hagan DT, Singh M, Dong C, Ugozzoli M, Berger K, Glazer E, Selby M, Wininger M, Ng P, Crawford K, Paliard X, Coates S, Houghton M. Vaccine; 2004 Dec 16; 23(5):672-80. PubMed ID: 15542189 [Abstract] [Full Text] [Related]
6. An investigation of the factors controlling the adsorption of protein antigens to anionic PLG microparticles. Chesko J, Kazzaz J, Ugozzoli M, O'hagan DT, Singh M. J Pharm Sci; 2005 Nov 16; 94(11):2510-9. PubMed ID: 16200615 [Abstract] [Full Text] [Related]
7. Characterization of protein-adjuvant coencapsulation in microparticles for vaccine delivery. Mathew S, Lendlein A, Wischke C. Eur J Pharm Biopharm; 2014 Jul 16; 87(2):403-7. PubMed ID: 24747810 [Abstract] [Full Text] [Related]
8. Encapsulation of chimeric protein rSAG1/2 into poly(lactide-co-glycolide) microparticles induces long-term protective immunity against Toxoplasma gondii in mice. Chuang SC, Ko JC, Chen CP, Du JT, Yang CD. Exp Parasitol; 2013 Aug 16; 134(4):430-7. PubMed ID: 23624036 [Abstract] [Full Text] [Related]
11. The preparation and characterization of PLG nanoparticles with an entrapped synthetic TLR7 agonist and their preclinical evaluation as adjuvant for an adsorbed DTaP vaccine. Bruno C, Agnolon V, Berti F, Bufali S, O'Hagan DT, Baudner BC. Eur J Pharm Biopharm; 2016 Aug 16; 105():1-8. PubMed ID: 27224856 [Abstract] [Full Text] [Related]
13. Aspects of the design and delivery of microparticles for vaccine applications. Jenkins PG, Coombes AG, Yeh MK, Thomas NW, Davis SS. J Drug Target; 1995 Aug 16; 3(1):79-81. PubMed ID: 7655826 [Abstract] [Full Text] [Related]
14. Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. San Román B, Irache JM, Gómez S, Tsapis N, Gamazo C, Espuelas MS. Eur J Pharm Biopharm; 2008 Sep 16; 70(1):98-108. PubMed ID: 18501572 [Abstract] [Full Text] [Related]
15. Using TEM to couple transient protein distribution and release for PLGA microparticles for potential use as vaccine delivery vehicles. Zhao A, Rodgers VG. J Control Release; 2006 Jun 12; 113(1):15-22. PubMed ID: 16707186 [Abstract] [Full Text] [Related]
16. Preparation of protein loaded poly(D,L-lactide-co-glycolide) microparticles for the antigen delivery to dendritic cells using a static micromixer. Wischke C, Lorenzen D, Zimmermann J, Borchert HH. Eur J Pharm Biopharm; 2006 Apr 12; 62(3):247-53. PubMed ID: 16288857 [Abstract] [Full Text] [Related]
19. In vivo electroporation enhances the potency of poly-lactide co-glycolide (PLG) plasmid DNA immunization. Barbon CM, Baker L, Lajoie C, Ramstedt U, Hedley ML, Luby TM. Vaccine; 2010 Nov 23; 28(50):7852-64. PubMed ID: 20943208 [Abstract] [Full Text] [Related]
20. A two-stage strategy for sterilization of poly(lactide-co-glycolide) particles by γ-irradiation does not impair their potency for vaccine delivery. Jain S, Malyala P, Pallaoro M, Giuliani M, Petersen H, O'Hagan DT, Singh M. J Pharm Sci; 2011 Feb 23; 100(2):646-54. PubMed ID: 20665902 [Abstract] [Full Text] [Related] Page: [Next] [New Search]