These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 22085979

  • 1. The effect of pedalling cadence on maximal accumulated oxygen deficit.
    Hill DW, Vingren JL.
    Eur J Appl Physiol; 2012 Jul; 112(7):2637-43. PubMed ID: 22085979
    [Abstract] [Full Text] [Related]

  • 2. Stability of pedalling mechanics during a prolonged cycling exercise performed at different cadences.
    Sarre G, Lepers R, van Hoecke J.
    J Sports Sci; 2005 Jul; 23(7):693-701. PubMed ID: 16195019
    [Abstract] [Full Text] [Related]

  • 3. Pedalling Cadence Affects V̇ o2 Kinetics in Severe-Intensity Exercise.
    Hill DW, Vingren JL.
    J Strength Cond Res; 2023 Jun 01; 37(6):1211-1217. PubMed ID: 36730543
    [Abstract] [Full Text] [Related]

  • 4. High content of MYHC II in vastus lateralis is accompanied by higher VO2/power output ratio during moderate intensity cycling performed both at low and at high pedalling rates.
    Majerczak J, Szkutnik Z, Karasinski J, Duda K, Kolodziejski L, Zoladz JA.
    J Physiol Pharmacol; 2006 Jun 01; 57(2):199-215. PubMed ID: 16845226
    [Abstract] [Full Text] [Related]

  • 5. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM, Withers RT, Craig NP, Bourdon PC, Stanef T, McKenzie I.
    Eur J Appl Physiol Occup Physiol; 1999 Sep 01; 80(4):285-91. PubMed ID: 10483797
    [Abstract] [Full Text] [Related]

  • 6. VO2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedaling rates: relationship to venous lactate accumulation and blood acid-base balance.
    Zoladz JA, Duda K, Majerczak J.
    Physiol Res; 1998 Sep 01; 47(6):427-38. PubMed ID: 10453750
    [Abstract] [Full Text] [Related]

  • 7. Maximal lactate steady state concentration independent of pedal cadence in active individuals.
    Denadai BS, Ruas VD, Figueira TR.
    Eur J Appl Physiol; 2006 Mar 01; 96(4):477-80. PubMed ID: 16328190
    [Abstract] [Full Text] [Related]

  • 8. Effects of exercise mode and participant sex on measures of anaerobic capacity.
    Hill DW, Vingren JL.
    J Sports Med Phys Fitness; 2014 Jun 01; 54(3):255-63. PubMed ID: 24739287
    [Abstract] [Full Text] [Related]

  • 9. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L, Thomas D.
    Int J Sports Med; 1996 May 01; 17(4):287-92. PubMed ID: 8814511
    [Abstract] [Full Text] [Related]

  • 10. Concurrent and Construct Validation of a Scale for Rating Perceived Exertion in Aquatic Cycling for Young Men.
    Colado JC, Brasil RM.
    J Sports Sci Med; 2019 Dec 01; 18(4):695-707. PubMed ID: 31827354
    [Abstract] [Full Text] [Related]

  • 11. Maximal accumulated oxygen deficit in running and cycling.
    Hill DW, Vingren JL.
    Appl Physiol Nutr Metab; 2011 Dec 01; 36(6):831-8. PubMed ID: 22050108
    [Abstract] [Full Text] [Related]

  • 12. Freely chosen cadence during ergometer cycling is dependent on pedalling history.
    Hansen EA, Nøddelund E, Nielsen FS, Sørensen MP, Nielsen MØ, Johansen M, Andersen MH, Nielsen MD.
    Eur J Appl Physiol; 2021 Nov 01; 121(11):3041-3049. PubMed ID: 34286367
    [Abstract] [Full Text] [Related]

  • 13. Human muscle power generating capability during cycling at different pedalling rates.
    Zoladz JA, Rademaker AC, Sargeant AJ.
    Exp Physiol; 2000 Jan 01; 85(1):117-24. PubMed ID: 10662901
    [Abstract] [Full Text] [Related]

  • 14. The effect of pedalling cadence on respiratory frequency: passive vs. active exercise of different intensities.
    Girardi M, Nicolò A, Bazzucchi I, Felici F, Sacchetti M.
    Eur J Appl Physiol; 2021 Feb 01; 121(2):583-596. PubMed ID: 33165638
    [Abstract] [Full Text] [Related]

  • 15. Negative accumulated oxygen deficit during heavy and very heavy intensity cycle ergometry in humans.
    Ozyener F, Rossiter HB, Ward SA, Whipp BJ.
    Eur J Appl Physiol; 2003 Sep 01; 90(1-2):185-90. PubMed ID: 14504952
    [Abstract] [Full Text] [Related]

  • 16. Effect of cadence on locomotor-respiratory coupling during upper-body exercise.
    Tiller NB, Price MJ, Campbell IG, Romer LM.
    Eur J Appl Physiol; 2017 Feb 01; 117(2):279-287. PubMed ID: 28032253
    [Abstract] [Full Text] [Related]

  • 17. Prediction of aerobic and anaerobic capacities of elite cyclists from changes in lactate during isocapnic buffering phase.
    Hasanli M, Nikooie R, Aveseh M, Mohammad F.
    J Strength Cond Res; 2015 Feb 01; 29(2):321-9. PubMed ID: 25144132
    [Abstract] [Full Text] [Related]

  • 18. The relationship between cadence, pedalling technique and gross efficiency in cycling.
    Leirdal S, Ettema G.
    Eur J Appl Physiol; 2011 Dec 01; 111(12):2885-93. PubMed ID: 21437606
    [Abstract] [Full Text] [Related]

  • 19. Effect of cadence on the economy of uphill cycling.
    Swain DP, Wilcox JP.
    Med Sci Sports Exerc; 1992 Oct 01; 24(10):1123-7. PubMed ID: 1435159
    [Abstract] [Full Text] [Related]

  • 20. Anaerobic contribution during maximal anaerobic running test: correlation with maximal accumulated oxygen deficit.
    Zagatto A, Redkva P, Loures J, Kalva Filho C, Franco V, Kaminagakura E, Papoti M.
    Scand J Med Sci Sports; 2011 Dec 01; 21(6):e222-30. PubMed ID: 21210856
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.