These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


406 related items for PubMed ID: 22095730

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.
    Kurokawa J, Bankston JR, Kaihara A, Chen L, Furukawa T, Kass RS.
    Channels (Austin); 2009; 3(1):16-24. PubMed ID: 19077539
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP₂.
    Dvir M, Strulovich R, Sachyani D, Ben-Tal Cohen I, Haitin Y, Dessauer C, Pongs O, Kass R, Hirsch JA, Attali B.
    J Cell Sci; 2014 Sep 15; 127(Pt 18):3943-55. PubMed ID: 25037568
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Functional effects of a KCNQ1 mutation associated with the long QT syndrome.
    Boulet IR, Raes AL, Ottschytsch N, Snyders DJ.
    Cardiovasc Res; 2006 Jun 01; 70(3):466-74. PubMed ID: 16564513
    [Abstract] [Full Text] [Related]

  • 12. A molecular mechanism for adrenergic-induced long QT syndrome.
    Wu J, Naiki N, Ding WG, Ohno S, Kato K, Zang WJ, Delisle BP, Matsuura H, Horie M.
    J Am Coll Cardiol; 2014 Mar 04; 63(8):819-27. PubMed ID: 24184248
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Targeting the IKs Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants.
    Zhong L, Yan Z, Jiang D, Weng KC, Ouyang Y, Zhang H, Lin X, Xiao C, Yang H, Yao J, Kang X, Wang C, Huang C, Shen B, Chung SK, Jiang ZH, Zhu W, Neher E, Silva JR, Hou P.
    Circ Res; 2024 Sep 13; 135(7):722-738. PubMed ID: 39166328
    [Abstract] [Full Text] [Related]

  • 17. Molecular Mechanism of Autosomal Recessive Long QT-Syndrome 1 without Deafness.
    Oertli A, Rinné S, Moss R, Kääb S, Seemann G, Beckmann BM, Decher N.
    Int J Mol Sci; 2021 Jan 23; 22(3):. PubMed ID: 33498651
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Abnormal KCNQ1 trafficking influences disease pathogenesis in hereditary long QT syndromes (LQT1).
    Wilson AJ, Quinn KV, Graves FM, Bitner-Glindzicz M, Tinker A.
    Cardiovasc Res; 2005 Aug 15; 67(3):476-86. PubMed ID: 15935335
    [Abstract] [Full Text] [Related]

  • 20. A double-point mutation in the selectivity filter site of the KCNQ1 potassium channel results in a severe phenotype, LQT1, of long QT syndrome.
    Ikrar T, Hanawa H, Watanabe H, Okada S, Aizawa Y, Ramadan MM, Komura S, Yamashita F, Chinushi M, Aizawa Y.
    J Cardiovasc Electrophysiol; 2008 May 15; 19(5):541-9. PubMed ID: 18266681
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.