These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


324 related items for PubMed ID: 22099956

  • 1. Electrochemical imprinted sensor for determination of oleanic acid based on poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes-chitosan and cobalt hexacyanoferrate nanoparticles.
    Hu Y, Zhang Z, Li J, Zhang H, Luo L, Yao S.
    Biosens Bioelectron; 2012 Jan 15; 31(1):190-6. PubMed ID: 22099956
    [Abstract] [Full Text] [Related]

  • 2. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine.
    Xing X, Liu S, Yu J, Lian W, Huang J.
    Biosens Bioelectron; 2012 Jan 15; 31(1):277-83. PubMed ID: 22074810
    [Abstract] [Full Text] [Related]

  • 3. Layer-by-layer assembly sensitive electrochemical sensor for selectively probing L-histidine based on molecular imprinting sol-gel at functionalized indium tin oxide electrode.
    Zhang Z, Hu Y, Zhang H, Luo L, Yao S.
    Biosens Bioelectron; 2010 Oct 15; 26(2):696-702. PubMed ID: 20643541
    [Abstract] [Full Text] [Related]

  • 4. Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4@SiO2/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode.
    Hu Y, Li J, Zhang Z, Zhang H, Luo L, Yao S.
    Anal Chim Acta; 2011 Jul 18; 698(1-2):61-8. PubMed ID: 21645660
    [Abstract] [Full Text] [Related]

  • 5. Electrochemical sensor based on molecularly imprinted polymer film via sol-gel technology and multi-walled carbon nanotubes-chitosan functional layer for sensitive determination of quinoxaline-2-carboxylic acid.
    Yang Y, Fang G, Liu G, Pan M, Wang X, Kong L, He X, Wang S.
    Biosens Bioelectron; 2013 Sep 15; 47():475-81. PubMed ID: 23624016
    [Abstract] [Full Text] [Related]

  • 6. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO(2) sol-gel.
    Zou Y, Xiang C, Sun LX, Xu F.
    Biosens Bioelectron; 2008 Feb 28; 23(7):1010-6. PubMed ID: 18054479
    [Abstract] [Full Text] [Related]

  • 7. Electrochemical fabrication of molecularly imprinted porous silicate film electrode for fast and selective response of methyl parathion.
    Tan X, Li B, Liew K, Li C.
    Biosens Bioelectron; 2010 Oct 15; 26(2):868-71. PubMed ID: 20728334
    [Abstract] [Full Text] [Related]

  • 8. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma.
    Yola ML, Eren T, Atar N.
    Biosens Bioelectron; 2014 Oct 15; 60():277-85. PubMed ID: 24832202
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode.
    Niu X, Yang W, Guo H, Ren J, Gao J.
    Biosens Bioelectron; 2013 Mar 15; 41():225-31. PubMed ID: 22951031
    [Abstract] [Full Text] [Related]

  • 14. An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays.
    Yang J, Zhang WD, Gunasekaran S.
    Biosens Bioelectron; 2010 Sep 15; 26(1):279-84. PubMed ID: 20615684
    [Abstract] [Full Text] [Related]

  • 15. Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing.
    Hao C, Ding L, Zhang X, Ju H.
    Anal Chem; 2007 Jun 15; 79(12):4442-7. PubMed ID: 17492835
    [Abstract] [Full Text] [Related]

  • 16. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip.
    Li X, Chen Z, Zhong Y, Yang F, Pan J, Liang Y.
    Anal Chim Acta; 2012 Jan 13; 710():118-24. PubMed ID: 22123120
    [Abstract] [Full Text] [Related]

  • 17. Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and L-tyrosine.
    Bhakta AK, Mascarenhas RJ, D'Souza OJ, Satpati AK, Detriche S, Mekhalif Z, Dalhalle J.
    Mater Sci Eng C Mater Biol Appl; 2015 Dec 01; 57():328-37. PubMed ID: 26354272
    [Abstract] [Full Text] [Related]

  • 18. Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode.
    Rezaei B, Khalili Boroujeni M, Ensafi AA.
    Biosens Bioelectron; 2014 Oct 15; 60():77-83. PubMed ID: 24769451
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.