These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 22112946
1. Water activity dependence of performance of surface-displayed lipase in yeast cells: a unique water requirement for enzymatic synthetic reaction in organic media. Yoshida A, Hama S, Nakashima K, Kondo A. Enzyme Microb Technol; 2011 Apr 07; 48(4-5):334-8. PubMed ID: 22112946 [Abstract] [Full Text] [Related]
2. Surfactant-modified yeast whole-cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media. Hama S, Yoshida A, Nakashima K, Noda H, Fukuda H, Kondo A. Appl Microbiol Biotechnol; 2010 Jun 07; 87(2):537-43. PubMed ID: 20336291 [Abstract] [Full Text] [Related]
3. Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents. Shiraga S, Kawakami M, Ishiguro M, Ueda M. Appl Environ Microbiol; 2005 Aug 07; 71(8):4335-8. PubMed ID: 16085821 [Abstract] [Full Text] [Related]
4. Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Matsumoto T, Ito M, Fukuda H, Kondo A. Appl Microbiol Biotechnol; 2004 May 07; 64(4):481-5. PubMed ID: 14689244 [Abstract] [Full Text] [Related]
5. Enhancement of activity of lipase-displaying yeast cells and their application to optical resolution of (R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate. Nakamura Y, Matsumoto T, Nomoto F, Ueda M, Fukuda H, Kondo A. Biotechnol Prog; 2006 May 07; 22(4):998-1002. PubMed ID: 16889376 [Abstract] [Full Text] [Related]
6. Transesterification of phosphatidylcholine in sn-1 position through direct use of lipase-producing Rhizopus oryzae cells as whole-cell biocatalyst. Hama S, Miura K, Yoshida A, Noda H, Fukuda H, Kondo A. Appl Microbiol Biotechnol; 2011 Jun 07; 90(5):1731-8. PubMed ID: 21468705 [Abstract] [Full Text] [Related]
7. Water activity dependence of lipases in non-aqueous biocatalysis. Xia X, Wang C, Yang B, Wang YH, Wang X. Appl Biochem Biotechnol; 2009 Dec 07; 159(3):759-67. PubMed ID: 19455434 [Abstract] [Full Text] [Related]
8. Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase. Duarte SH, Hernández GL, Canet A, Benaiges MD, Maugeri F, Valero F. Bioresour Technol; 2015 May 07; 183():175-80. PubMed ID: 25731926 [Abstract] [Full Text] [Related]
9. Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification. Herbst D, Peper S, Niemeyer B. J Biotechnol; 2012 Dec 31; 162(4):398-403. PubMed ID: 22465292 [Abstract] [Full Text] [Related]
10. Oleyl oleate synthesis by immobilized lipase from Candida sp.1619. Zhang J, Xu J. Chin J Biotechnol; 1995 Dec 31; 11(4):243-51. PubMed ID: 8739102 [Abstract] [Full Text] [Related]
11. Computer-aided control of water activity for lipase-catalyzed esterification in solvent-free systems. Won K, Lee SB. Biotechnol Prog; 2001 Dec 31; 17(2):258-64. PubMed ID: 11312702 [Abstract] [Full Text] [Related]
12. Preparation and comparative characterization of immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase for enzymatic biodiesel production. Hama S, Tamalampudi S, Suzuki Y, Yoshida A, Fukuda H, Kondo A. Appl Microbiol Biotechnol; 2008 Dec 31; 81(4):637-45. PubMed ID: 18795281 [Abstract] [Full Text] [Related]
13. Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized Candida rugosa and Rhizopus oryzae lipases. Lee JH, Kim SB, Park C, Tae B, Han SO, Kim SW. Appl Biochem Biotechnol; 2010 May 31; 161(1-8):365-71. PubMed ID: 19898962 [Abstract] [Full Text] [Related]
14. Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane. Kang IJ, Pfromm PH, Rezac ME. J Biotechnol; 2005 Sep 23; 119(2):147-54. PubMed ID: 15941606 [Abstract] [Full Text] [Related]
15. Construction of a novel synergistic system for production and recovery of secreted recombinant proteins by the cell surface engineering. Shibasaki S, Kawabata A, Ishii J, Yagi S, Kadonosono T, Kato M, Fukuda N, Kondo A, Ueda M. Appl Microbiol Biotechnol; 2007 Jun 23; 75(4):821-8. PubMed ID: 17345082 [Abstract] [Full Text] [Related]
16. Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Liu WS, Pan XX, Jia B, Zhao HY, Xu L, Liu Y, Yan YJ. Appl Microbiol Biotechnol; 2010 Oct 23; 88(4):885-91. PubMed ID: 20676630 [Abstract] [Full Text] [Related]
17. Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Lee JH, Kim SB, Kang SW, Song YS, Park C, Han SO, Kim SW. Bioresour Technol; 2011 Jan 23; 102(2):2105-8. PubMed ID: 20813518 [Abstract] [Full Text] [Related]
18. Improving the catalytic characteristics of lipase-displaying yeast cells by hydrophobic modification. Zhang K, Jin Z, Wang P, Zheng SP, Han SY, Lin Y. Bioprocess Biosyst Eng; 2017 Nov 23; 40(11):1689-1699. PubMed ID: 28836017 [Abstract] [Full Text] [Related]
19. Hydration-aggregation pretreatment for drastically improving esterification activity of commercial lipases in non-aqueous media. Katayama M, Kuroiwa T, Suzuno K, Igusa A, Matsui T, Kanazawa A. Enzyme Microb Technol; 2017 Oct 23; 105():30-37. PubMed ID: 28756858 [Abstract] [Full Text] [Related]
20. Transesterification activity of a novel lipase from Acinetobacter venetianus RAG-1. Snellman EA, Colwell RR. Antonie Van Leeuwenhoek; 2008 Nov 23; 94(4):621-5. PubMed ID: 18720025 [Abstract] [Full Text] [Related] Page: [Next] [New Search]