These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Hyperosmolar Tears Induce Functional and Structural Alterations of Corneal Nerves: Electrophysiological and Anatomical Evidence Toward Neurotoxicity. Hirata H, Mizerska K, Marfurt CF, Rosenblatt MI. Invest Ophthalmol Vis Sci; 2015 Dec 19; 56(13):8125-40. PubMed ID: 26720465 [Abstract] [Full Text] [Related]
6. Estimating the Osmolarities of Tears During Evaporation Through the "Eyes" of the Corneal Nerves. Hirata H, Mizerska K, Dallacasagrande V, Rosenblatt MI. Invest Ophthalmol Vis Sci; 2017 Jan 01; 58(1):168-178. PubMed ID: 28114576 [Abstract] [Full Text] [Related]
8. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Parra A, Madrid R, Echevarria D, del Olmo S, Morenilla-Palao C, Acosta MC, Gallar J, Dhaka A, Viana F, Belmonte C. Nat Med; 2010 Dec 01; 16(12):1396-9. PubMed ID: 21076394 [Abstract] [Full Text] [Related]
9. Corneal dry-responsive neurons in the spinal trigeminal nucleus respond to innocuous cooling in the rat. Kurose M, Meng ID. J Neurophysiol; 2013 May 01; 109(10):2517-22. PubMed ID: 23446686 [Abstract] [Full Text] [Related]
10. Ambient Air Currents Activate Corneal Nerves During Ocular Desiccation in Rats: Simultaneous Recordings of Neural Activity and Corneal Temperature. Hirata H, Dallacasagrande V, Mizerska K, Ivakhnitskaia E, Rosenblatt MI. Invest Ophthalmol Vis Sci; 2018 Aug 01; 59(10):4031-4043. PubMed ID: 30098191 [Abstract] [Full Text] [Related]
11. Quantitative characterization reveals three types of dry-sensitive corneal afferents: pattern of discharge, receptive field, and thermal and chemical sensitivity. Hirata H, Fried N, Oshinsky ML. J Neurophysiol; 2012 Nov 01; 108(9):2481-93. PubMed ID: 22914652 [Abstract] [Full Text] [Related]
13. Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents. Robbins A, Kurose M, Winterson BJ, Meng ID. Invest Ophthalmol Vis Sci; 2012 Oct 09; 53(11):7034-42. PubMed ID: 22952122 [Abstract] [Full Text] [Related]
14. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells. Kurose M, Meng ID. J Neurophysiol; 2013 Jul 09; 110(2):495-504. PubMed ID: 23636717 [Abstract] [Full Text] [Related]
15. Morphological and functional changes in TRPM8-expressing corneal cold thermoreceptor neurons during aging and their impact on tearing in mice. Alcalde I, Íñigo-Portugués A, González-González O, Almaraz L, Artime E, Morenilla-Palao C, Gallar J, Viana F, Merayo-Lloves J, Belmonte C. J Comp Neurol; 2018 Aug 01; 526(11):1859-1874. PubMed ID: 29664111 [Abstract] [Full Text] [Related]
17. TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. Fajardo O, Meseguer V, Belmonte C, Viana F. J Neurosci; 2008 Jul 30; 28(31):7863-75. PubMed ID: 18667618 [Abstract] [Full Text] [Related]
18. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea. Parra A, Gonzalez-Gonzalez O, Gallar J, Belmonte C. Pain; 2014 Aug 30; 155(8):1481-1491. PubMed ID: 24785271 [Abstract] [Full Text] [Related]
19. The role of corneal afferent neurons in regulating tears under normal and dry eye conditions. Meng ID, Kurose M. Exp Eye Res; 2013 Dec 30; 117():79-87. PubMed ID: 23994439 [Abstract] [Full Text] [Related]
20. Acute corneal epithelial debridement unmasks the corneal stromal nerve responses to ocular stimulation in rats: implications for abnormal sensations of the eye. Hirata H, Mizerska K, Dallacasagrande V, Guaiquil VH, Rosenblatt MI. J Neurophysiol; 2017 May 01; 117(5):1935-1947. PubMed ID: 28250152 [Abstract] [Full Text] [Related] Page: [Next] [New Search]