These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


387 related items for PubMed ID: 22123828

  • 1. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y.
    J Biol Chem; 2012 Jan 20; 287(4):2353-63. PubMed ID: 22123828
    [Abstract] [Full Text] [Related]

  • 2. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.
    Pelikan RC, Iwata J, Suzuki A, Chai Y, Hacia JG.
    J Cell Biochem; 2013 Apr 20; 114(4):796-807. PubMed ID: 23060211
    [Abstract] [Full Text] [Related]

  • 3. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, Shuler CF, Moses HL, Chai Y.
    Development; 2003 Nov 20; 130(21):5269-80. PubMed ID: 12975342
    [Abstract] [Full Text] [Related]

  • 4. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.
    Song Z, Liu C, Iwata J, Gu S, Suzuki A, Sun C, He W, Shu R, Li L, Chai Y, Chen Y.
    J Biol Chem; 2013 Apr 12; 288(15):10440-50. PubMed ID: 23460641
    [Abstract] [Full Text] [Related]

  • 5. CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development.
    Parada C, Li J, Iwata J, Suzuki A, Chai Y.
    Mol Cell Biol; 2013 Sep 12; 33(17):3482-93. PubMed ID: 23816882
    [Abstract] [Full Text] [Related]

  • 6. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A, Cesario J, Landin Malt A, Zhao Y, Sharma N, Choi V, Jeong J.
    BMC Dev Biol; 2014 Jan 17; 14():3. PubMed ID: 24433583
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.
    Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Chai Y.
    Hum Mol Genet; 2014 Jan 01; 23(1):182-93. PubMed ID: 23975680
    [Abstract] [Full Text] [Related]

  • 9. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.
    Iwata J, Suzuki A, Yokota T, Ho TV, Pelikan R, Urata M, Sanchez-Lara PA, Chai Y.
    Development; 2014 Feb 01; 141(4):909-17. PubMed ID: 24496627
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Alk5-mediated transforming growth factor β signaling acts upstream of fibroblast growth factor 10 to regulate the proliferation and maintenance of dental epithelial stem cells.
    Zhao H, Li S, Han D, Kaartinen V, Chai Y.
    Mol Cell Biol; 2011 May 01; 31(10):2079-89. PubMed ID: 21402782
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice.
    Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Urata M, Dixon MJ, Chai Y.
    Development; 2013 Mar 01; 140(6):1220-30. PubMed ID: 23406900
    [Abstract] [Full Text] [Related]

  • 14. Gpr177-mediated Wnt Signaling Is Required for Secondary Palate Development.
    Liu Y, Wang M, Zhao W, Yuan X, Yang X, Li Y, Qiu M, Zhu XJ, Zhang Z.
    J Dent Res; 2015 Jul 01; 94(7):961-7. PubMed ID: 25922332
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.
    Ho TV, Iwata J, Ho HA, Grimes WC, Park S, Sanchez-Lara PA, Chai Y.
    Dev Biol; 2015 Apr 15; 400(2):180-90. PubMed ID: 25722190
    [Abstract] [Full Text] [Related]

  • 17. Ablation of the Sox11 Gene Results in Clefting of the Secondary Palate Resembling the Pierre Robin Sequence.
    Huang H, Yang X, Bao M, Cao H, Miao X, Zhang X, Gan L, Qiu M, Zhang Z.
    J Biol Chem; 2016 Mar 25; 291(13):7107-18. PubMed ID: 26826126
    [Abstract] [Full Text] [Related]

  • 18. The role of the histone methyltransferase SET domain bifurcated 1 during palatal development.
    Kano S, Higashihori N, Thiha P, Takechi M, Iseki S, Moriyama K.
    Biochem Biophys Res Commun; 2022 Apr 02; 598():74-80. PubMed ID: 35151207
    [Abstract] [Full Text] [Related]

  • 19. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X, Han J, Ito Y, Bringas P, Urata MM, Chai Y.
    Dev Biol; 2006 Sep 01; 297(1):238-48. PubMed ID: 16780827
    [Abstract] [Full Text] [Related]

  • 20. Cleft Palate Induced by Augmented Fibroblast Growth Factor-9 Signaling in Cranial Neural Crest Cells in Mice.
    Lin C, Liu S, Ruan N, Chen J, Chen Y, Zhang Y, Zhang J.
    Stem Cells Dev; 2024 Oct 01; 33(19-20):562-573. PubMed ID: 39119818
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.