These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


387 related items for PubMed ID: 22123828

  • 21. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development.
    Ohki S, Oka K, Ogata K, Okuhara S, Rikitake M, Toda-Nakamura M, Tamura S, Ozaki M, Iseki S, Sakai T.
    Front Physiol; 2020; 11():532. PubMed ID: 32581832
    [Abstract] [Full Text] [Related]

  • 22. Tissue-specific analysis of Fgf18 gene function in palate development.
    Yue M, Lan Y, Liu H, Wu Z, Imamura T, Jiang R.
    Dev Dyn; 2021 Apr; 250(4):562-573. PubMed ID: 33034111
    [Abstract] [Full Text] [Related]

  • 23. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.
    Li C, Lan Y, Krumlauf R, Jiang R.
    J Dent Res; 2017 Oct; 96(11):1273-1281. PubMed ID: 28692808
    [Abstract] [Full Text] [Related]

  • 24. Protein Arginine Methyltransferase PRMT1 Is Essential for Palatogenesis.
    Gou Y, Li J, Jackson-Weaver O, Wu J, Zhang T, Gupta R, Cho I, Ho TV, Chen Y, Li M, Richard S, Wang J, Chai Y, Xu J.
    J Dent Res; 2018 Dec; 97(13):1510-1518. PubMed ID: 29986157
    [Abstract] [Full Text] [Related]

  • 25. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.
    Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y.
    Hum Mol Genet; 2017 Mar 01; 26(5):860-872. PubMed ID: 28069795
    [Abstract] [Full Text] [Related]

  • 26. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.
    Parada C, Han D, Grimaldi A, Sarrión P, Park SS, Pelikan R, Sanchez-Lara PA, Chai Y.
    Development; 2015 Nov 01; 142(21):3734-45. PubMed ID: 26395480
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Involvement of homeobox transcription factor Mohawk in palatogenesis.
    Adachi Y, Higuchi A, Wakai E, Shiromizu T, Koiwa J, Nishimura Y.
    Congenit Anom (Kyoto); 2022 Jan 01; 62(1):27-37. PubMed ID: 34816492
    [Abstract] [Full Text] [Related]

  • 29. FGF9 Promotes Expression of HAS2 in Palatal Elevation via the Wnt/β-Catenin/TCF7L2 Pathway.
    Sun Y, Ying X, Li R, Weng M, Shi J, Chen Z.
    Biomolecules; 2022 Nov 04; 12(11):. PubMed ID: 36358989
    [Abstract] [Full Text] [Related]

  • 30. Fgf9 signaling regulates small intestinal elongation and mesenchymal development.
    Geske MJ, Zhang X, Patel KK, Ornitz DM, Stappenbeck TS.
    Development; 2008 Sep 04; 135(17):2959-68. PubMed ID: 18653563
    [Abstract] [Full Text] [Related]

  • 31. Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice.
    Iwata J, Hacia JG, Suzuki A, Sanchez-Lara PA, Urata M, Chai Y.
    J Clin Invest; 2012 Mar 04; 122(3):873-85. PubMed ID: 22326956
    [Abstract] [Full Text] [Related]

  • 32. Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
    Lan Y, Qin C, Jiang R.
    J Dent Res; 2019 Nov 04; 98(12):1367-1375. PubMed ID: 31509714
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Altered BMP-Smad4 signaling causes complete cleft palate by disturbing osteogenesis in palatal mesenchyme.
    Li N, Liu J, Liu H, Wang S, Hu P, Zhou H, Xiao J, Liu C.
    J Mol Histol; 2021 Feb 04; 52(1):45-61. PubMed ID: 33159638
    [Abstract] [Full Text] [Related]

  • 35. TGFbeta-mediated FGF signaling is crucial for regulating cranial neural crest cell proliferation during frontal bone development.
    Sasaki T, Ito Y, Bringas P, Chou S, Urata MM, Slavkin H, Chai Y.
    Development; 2006 Jan 04; 133(2):371-81. PubMed ID: 16368934
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme.
    Nik AM, Johansson JA, Ghiami M, Reyahi A, Carlsson P.
    Dev Biol; 2016 Jul 01; 415(1):14-23. PubMed ID: 27180663
    [Abstract] [Full Text] [Related]

  • 39. TGF-beta mediated Dlx5 signaling plays a crucial role in osteo-chondroprogenitor cell lineage determination during mandible development.
    Oka K, Oka S, Hosokawa R, Bringas P, Brockhoff HC, Nonaka K, Chai Y.
    Dev Biol; 2008 Sep 15; 321(2):303-9. PubMed ID: 18684439
    [Abstract] [Full Text] [Related]

  • 40. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
    Welsh IC, Hart J, Brown JM, Hansen K, Rocha Marques M, Aho RJ, Grishina I, Hurtado R, Herzlinger D, Ferretti E, Garcia-Garcia MJ, Selleri L.
    J Anat; 2018 Aug 15; 233(2):222-242. PubMed ID: 29797482
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.