These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK. Plant J; 2010 Sep; 63(5):836-47. PubMed ID: 20584149 [Abstract] [Full Text] [Related]
3. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D, Zhang H, Song Q, Wang L, Liu S, Hong Y, Huang L, Song F. BMC Plant Biol; 2015 Jun 14; 15():143. PubMed ID: 26070456 [Abstract] [Full Text] [Related]
4. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Díaz J, ten Have A, van Kan JA. Plant Physiol; 2002 Jul 14; 129(3):1341-51. PubMed ID: 12114587 [Abstract] [Full Text] [Related]
5. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733 [Abstract] [Full Text] [Related]
6. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. Zhang X, Xu Z, Chen L, Ren Z. BMC Plant Biol; 2019 Oct 21; 19(1):437. PubMed ID: 31638895 [Abstract] [Full Text] [Related]
7. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Harel YM, Mehari ZH, Rav-David D, Elad Y. Phytopathology; 2014 Feb 21; 104(2):150-7. PubMed ID: 24047252 [Abstract] [Full Text] [Related]
8. Enhanced resistance to fungal and bacterial diseases in tomato and Arabidopsis expressing BSR2 from rice. Maeda S, Yokotani N, Oda K, Mori M. Plant Cell Rep; 2020 Nov 21; 39(11):1493-1503. PubMed ID: 32772129 [Abstract] [Full Text] [Related]
9. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X, Huang L, Zhang Y, Ouyang Z, Hong Y, Zhang H, Li D, Song F. BMC Plant Biol; 2014 Oct 28; 14():286. PubMed ID: 25348703 [Abstract] [Full Text] [Related]
12. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Zhang H, Yan M, Deng R, Song F, Jiang M. Gene; 2020 Feb 15; 727():144245. PubMed ID: 31715302 [Abstract] [Full Text] [Related]
13. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell AL. Plant Physiol; 2009 Jul 15; 150(3):1434-49. PubMed ID: 19465579 [Abstract] [Full Text] [Related]
15. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress. Liu B, Hong YB, Zhang YF, Li XH, Huang L, Zhang HJ, Li DY, Song FM. Plant Sci; 2014 Oct 15; 227():145-56. PubMed ID: 25219316 [Abstract] [Full Text] [Related]
16. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Flors V, Leyva Mde L, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C. Plant J; 2007 Dec 15; 52(6):1027-40. PubMed ID: 17916112 [Abstract] [Full Text] [Related]