These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. Rosati G, Gallina P, Masiero S. IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714 [Abstract] [Full Text] [Related]
7. Gait impairment in neurological disorders: a new technological approach. Semprini R, Sale P, Foti C, Fini M, Franceschini M. Funct Neurol; 2009 Dec; 24(4):179-83. PubMed ID: 20412722 [Abstract] [Full Text] [Related]
8. Robotics and virtual reality: a perfect marriage for motor control research and rehabilitation. Patton J, Dawe G, Scharver C, Mussa-Ivaldi F, Kenyon R. Assist Technol; 2006 Dec; 18(2):181-95. PubMed ID: 17236477 [Abstract] [Full Text] [Related]
9. A robotic & virtual reality orthopedic rehabilitation system for the forearm. Padilla-Castaneda MA, Sotgiu E, Frisoli A, Bergamasco M. Stud Health Technol Inform; 2012 Dec; 181():324-8. PubMed ID: 22954881 [Abstract] [Full Text] [Related]
10. Non-contact versus contact-based sensing methodologies for in-home upper arm robotic rehabilitation. Howard A, Brooks D, Brown E, Gebregiorgis A, Chen YP. IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650487. PubMed ID: 24187304 [Abstract] [Full Text] [Related]
11. [Application of virtual reality in the motor aspects of neurorehabilitation]. Peñasco-Martín B, de los Reyes-Guzmán A, Gil-Agudo Á, Bernal-Sahún A, Pérez-Aguilar B, de la Peña-González AI. Rev Neurol; 2010 Oct 16; 51(8):481-8. PubMed ID: 20925030 [Abstract] [Full Text] [Related]
12. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. Riener R, Lünenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. IEEE Trans Neural Syst Rehabil Eng; 2005 Sep 16; 13(3):380-94. PubMed ID: 16200761 [Abstract] [Full Text] [Related]
13. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. Schuler T, Brütsch K, Müller R, van Hedel HJ, Meyer-Heim A. NeuroRehabilitation; 2011 Sep 16; 28(4):401-11. PubMed ID: 21725175 [Abstract] [Full Text] [Related]
14. Robot assisted treadmill training: mechanisms and training strategies. Hussain S, Xie SQ, Liu G. Med Eng Phys; 2011 Jun 16; 33(5):527-33. PubMed ID: 21216650 [Abstract] [Full Text] [Related]
15. Rehabilitation exoskeletal robotics. The promise of an emerging field. Pons JL. IEEE Eng Med Biol Mag; 2010 Jun 16; 29(3):57-63. PubMed ID: 20659858 [Abstract] [Full Text] [Related]
16. A virtual reality environment for designing and fitting neural prosthetic limbs. Hauschild M, Davoodi R, Loeb GE. IEEE Trans Neural Syst Rehabil Eng; 2007 Mar 16; 15(1):9-15. PubMed ID: 17436870 [Abstract] [Full Text] [Related]
17. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots. Wilkening A, Ivlev O. IEEE Int Conf Rehabil Robot; 2013 Jun 16; 2013():6650354. PubMed ID: 24187173 [Abstract] [Full Text] [Related]
18. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Hornby TG, Zemon DH, Campbell D. Phys Ther; 2005 Jan 16; 85(1):52-66. PubMed ID: 15623362 [Abstract] [Full Text] [Related]
19. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL. IEEE Trans Neural Syst Rehabil Eng; 2007 Sep 16; 15(3):367-78. PubMed ID: 17894269 [Abstract] [Full Text] [Related]
20. Neural coding for effective rehabilitation. Hu X, Wang Y, Zhao T, Gunduz A. Biomed Res Int; 2014 Sep 16; 2014():286505. PubMed ID: 25258708 [Abstract] [Full Text] [Related] Page: [Next] [New Search]