These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 22133474
1. Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose. Yum K, Ahn JH, McNicholas TP, Barone PW, Mu B, Kim JH, Jain RM, Strano MS. ACS Nano; 2012 Jan 24; 6(1):819-30. PubMed ID: 22133474 [Abstract] [Full Text] [Related]
2. Near-infrared optical sensors based on single-walled carbon nanotubes. Barone PW, Baik S, Heller DA, Strano MS. Nat Mater; 2005 Jan 24; 4(1):86-92. PubMed ID: 15592477 [Abstract] [Full Text] [Related]
3. Modulation of single-walled carbon nanotube photoluminescence by hydrogel swelling. Barone PW, Yoon H, Ortiz-García R, Zhang J, Ahn JH, Kim JH, Strano MS. ACS Nano; 2009 Dec 22; 3(12):3869-77. PubMed ID: 19928995 [Abstract] [Full Text] [Related]
4. The evaluation of individual dispersion of single-walled carbon nanotubes using absorption and fluorescence spectroscopic techniques. Yoon D, Kang SJ, Choi JB, Kim YJ, Baik S. J Nanosci Nanotechnol; 2007 Nov 22; 7(11):3727-30. PubMed ID: 18047046 [Abstract] [Full Text] [Related]
5. Diameter-dependent solubility of single-walled carbon nanotubes. Duque JG, Parra-Vasquez AN, Behabtu N, Green MJ, Higginbotham AL, Price BK, Leonard AD, Schmidt HK, Lounis B, Tour JM, Doorn SK, Cognet L, Pasquali M. ACS Nano; 2010 Jun 22; 4(6):3063-72. PubMed ID: 20521799 [Abstract] [Full Text] [Related]
6. A structure-function relationship for the optical modulation of phenyl boronic acid-grafted, polyethylene glycol-wrapped single-walled carbon nanotubes. Mu B, McNicholas TP, Zhang J, Hilmer AJ, Jin Z, Reuel NF, Kim JH, Yum K, Strano MS. J Am Chem Soc; 2012 Oct 24; 134(42):17620-7. PubMed ID: 22978786 [Abstract] [Full Text] [Related]
7. Photophysical comparative study of amylose and polyvinyle pyrrolidone/single walled carbon nanotubes complex. Bonnet P, Buisson JP, Nomède Martyr N, Bizot H, Buelon A, Chauvet O. Phys Chem Chem Phys; 2009 Oct 14; 11(38):8626-31. PubMed ID: 19774297 [Abstract] [Full Text] [Related]
8. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. Shekhar S, Stokes P, Khondaker SI. ACS Nano; 2011 Mar 22; 5(3):1739-46. PubMed ID: 21323326 [Abstract] [Full Text] [Related]
9. Optically active single-walled carbon nanotubes. Peng X, Komatsu N, Bhattacharya S, Shimawaki T, Aonuma S, Kimura T, Osuka A. Nat Nanotechnol; 2007 Jun 22; 2(6):361-5. PubMed ID: 18654308 [Abstract] [Full Text] [Related]
10. Generating selective saccharide binding affinity of phenyl boronic acids by using single-walled carbon nanotube corona phases. Mu B, Ahn J, McNicholas TP, Strano MS. Chemistry; 2015 Mar 16; 21(12):4523-8. PubMed ID: 25644377 [Abstract] [Full Text] [Related]
11. Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling. Reuel NF, Ahn JH, Kim JH, Zhang J, Boghossian AA, Mahal LK, Strano MS. J Am Chem Soc; 2011 Nov 09; 133(44):17923-33. PubMed ID: 21970594 [Abstract] [Full Text] [Related]
12. Affinity chemiresistor sensor for sugars. Tlili C, Badhulika S, Tran TT, Lee I, Mulchandani A. Talanta; 2014 Oct 09; 128():473-9. PubMed ID: 25059188 [Abstract] [Full Text] [Related]
13. Hierarchical carbon nanotube assemblies created by sugar-boric or boronic acid interactions. Tamesue S, Numata M, Kaneko K, James TD, Shinkai S. Chem Commun (Camb); 2008 Oct 07; (37):4478-80. PubMed ID: 18802596 [Abstract] [Full Text] [Related]
14. A novel fluorescent aptasensor based on single-walled carbon nanohorns. Zhu S, Han S, Zhang L, Parveen S, Xu G. Nanoscale; 2011 Nov 07; 3(11):4589-92. PubMed ID: 22006211 [Abstract] [Full Text] [Related]
15. A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. Zhang L, Wei H, Li J, Li T, Li D, Li Y, Wang E. Biosens Bioelectron; 2010 Apr 15; 25(8):1897-901. PubMed ID: 20106653 [Abstract] [Full Text] [Related]
16. Amperometric glucose biosensor based on single-walled carbon nanohorns. Liu X, Shi L, Niu W, Li H, Xu G. Biosens Bioelectron; 2008 Jul 15; 23(12):1887-90. PubMed ID: 18387291 [Abstract] [Full Text] [Related]
17. Enhanced electrochemical oxygen reduction-based glucose sensing using glucose oxidase on nanodendritic poly[meso-tetrakis(2-thienyl)porphyrinato]cobalt(II)-SWNTs composite electrodes. Chen W, Ding Y, Akhigbe J, Brückner C, Li CM, Lei Y. Biosens Bioelectron; 2010 Oct 15; 26(2):504-10. PubMed ID: 20813516 [Abstract] [Full Text] [Related]
18. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Guan WJ, Li Y, Chen YQ, Zhang XB, Hu GQ. Biosens Bioelectron; 2005 Sep 15; 21(3):508-12. PubMed ID: 16076441 [Abstract] [Full Text] [Related]
19. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties. Zhang X, Lü Z, Wen M, Liang H, Zhang J, Liu Z. J Phys Chem B; 2005 Jan 27; 109(3):1101-7. PubMed ID: 16851066 [Abstract] [Full Text] [Related]
20. Ultra-high redox enzyme signal transduction using highly ordered carbon nanotube array electrodes. Withey GD, Lazareck AD, Tzolov MB, Yin A, Aich P, Yeh JI, Xu JM. Biosens Bioelectron; 2006 Feb 15; 21(8):1560-5. PubMed ID: 16129596 [Abstract] [Full Text] [Related] Page: [Next] [New Search]