These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 22133518
1. Inducing novel electronic properties in <112> Ge nanowires by means of variations in their size, shape and strain: a first-principles computational study. Zhang C, De Sarkar A, Zhang RQ. J Phys Condens Matter; 2012 Jan 11; 24(1):015301. PubMed ID: 22133518 [Abstract] [Full Text] [Related]
2. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain. Peng X, Tang F, Logan P. J Phys Condens Matter; 2011 Mar 23; 23(11):115502. PubMed ID: 21358032 [Abstract] [Full Text] [Related]
3. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires. Jing M, Ni M, Song W, Lu J, Gao Z, Lai L, Mei WN, Yu D, Ye H, Wang L. J Phys Chem B; 2006 Sep 21; 110(37):18332-7. PubMed ID: 16970454 [Abstract] [Full Text] [Related]
4. Modulating the electronic properties of germanium nanowires via applied strain and surface passivation. Sk MA, Ng MF, Huang L, Lim KH. Phys Chem Chem Phys; 2013 Apr 28; 15(16):5927-35. PubMed ID: 23493789 [Abstract] [Full Text] [Related]
5. Mechanical and electronic properties of diamond nanowires under tensile strain from first principles. Jiang X, Zhao J, Jiang X. Nanotechnology; 2011 Oct 07; 22(40):405705. PubMed ID: 21911933 [Abstract] [Full Text] [Related]
6. Water induced electrical hysteresis in germanium nanowires: a theoretical study. Sk MA, Ng MF, Yang SW, Lim KH. Phys Chem Chem Phys; 2011 Jun 28; 13(24):11663-70. PubMed ID: 21597612 [Abstract] [Full Text] [Related]
7. Stress induced half-metallicity in surface defected germanium nanowires. Sk MA, Ng MF, Yang SW, Lim KH. Phys Chem Chem Phys; 2012 Jan 21; 14(3):1166-74. PubMed ID: 22127329 [Abstract] [Full Text] [Related]
8. First-principles studies on structural and electronic properties of GaN-AlN heterostructure nanowires. Zhang H, Li Y, Tang Q, Liu L, Zhou Z. Nanoscale; 2012 Feb 21; 4(4):1078-84. PubMed ID: 21881662 [Abstract] [Full Text] [Related]
9. Structural and electronic properties of ZnO/GaN heterostructured nanowires from first-principles study. Zhang Y, Fang DQ, Zhang SL, Huang R, Wen YH. Phys Chem Chem Phys; 2016 Jan 28; 18(4):3097-102. PubMed ID: 26741266 [Abstract] [Full Text] [Related]
10. Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires. Fukata N, Sato K, Mitome M, Bando Y, Sekiguchi T, Kirkham M, Hong JI, Wang ZL, Snyder RL. ACS Nano; 2010 Jul 27; 4(7):3807-16. PubMed ID: 20565120 [Abstract] [Full Text] [Related]
11. Surface chemistry and electrical properties of germanium nanowires. Wang D, Chang YL, Wang Q, Cao J, Farmer DB, Gordon RG, Dai H. J Am Chem Soc; 2004 Sep 22; 126(37):11602-11. PubMed ID: 15366907 [Abstract] [Full Text] [Related]
12. First-principles studies of SnS2 nanotubes: a potential semiconductor nanowire. Chang H, In E, Kong KJ, Lee JO, Choi Y, Ryu BH. J Phys Chem B; 2005 Jan 13; 109(1):30-2. PubMed ID: 16850978 [Abstract] [Full Text] [Related]
13. Lithium effects on the mechanical and electronic properties of germanium nanowires. González-Macías A, Salazar F, Miranda A, Trejo-Baños A, Pérez LA, Carvajal E, Cruz-Irisson M. Nanotechnology; 2018 Apr 02; 29(15):154004. PubMed ID: 29372891 [Abstract] [Full Text] [Related]
14. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires. Li D, Wang Z, Gao F. Nanotechnology; 2010 Dec 17; 21(50):505709. PubMed ID: 21098947 [Abstract] [Full Text] [Related]
15. Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts. Sierra-Sastre Y, Dayeh SA, Picraux ST, Batt CA. ACS Nano; 2010 Feb 23; 4(2):1209-17. PubMed ID: 20128609 [Abstract] [Full Text] [Related]
16. The Novel of n-p-n Type Transition in the ZnSe/Ge Heterojunction Nanowire: First Principles Study. Huang J, Xing H, Huang Y, Wang C, Chen X. J Nanosci Nanotechnol; 2019 Sep 01; 19(9):5847-5853. PubMed ID: 30961748 [Abstract] [Full Text] [Related]
17. Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells. Pizzi G, Virgilio M, Grosso G. Nanotechnology; 2010 Feb 05; 21(5):055202. PubMed ID: 20023310 [Abstract] [Full Text] [Related]
18. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Lu P, Wu X, Guo W, Zeng XC. Phys Chem Chem Phys; 2012 Oct 05; 14(37):13035-40. PubMed ID: 22911017 [Abstract] [Full Text] [Related]
19. Polygermanes: bandgap engineering via tensile strain and side-chain substitution. Fa W, Zeng XC. Chem Commun (Camb); 2014 Aug 21; 50(65):9126-9. PubMed ID: 24990582 [Abstract] [Full Text] [Related]
20. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. Hu T, Han Y, Dong J. Nanotechnology; 2014 Nov 14; 25(45):455703. PubMed ID: 25333269 [Abstract] [Full Text] [Related] Page: [Next] [New Search]