These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 22133566
1. Transcription profiling of sparkling wine second fermentation. Penacho V, Valero E, Gonzalez R. Int J Food Microbiol; 2012 Feb 01; 153(1-2):176-82. PubMed ID: 22133566 [Abstract] [Full Text] [Related]
2. Impact of CO2 overpressure on yeast mitochondrial associated proteome during the "prise de mousse" of sparkling wine production. Porras-Agüera JA, Moreno-García J, García-Martínez T, Moreno J, Mauricio JC. Int J Food Microbiol; 2021 Jun 16; 348():109226. PubMed ID: 33964807 [Abstract] [Full Text] [Related]
3. Autophagy in wine making. Cebollero E, Rejas MT, González R. Methods Enzymol; 2008 Jun 16; 451():163-75. PubMed ID: 19185720 [Abstract] [Full Text] [Related]
4. Effect of endogenous CO2 overpressure on the yeast "stressome" during the "prise de mousse" of sparkling wine. Porras-Agüera JA, Román-Camacho JJ, Moreno-García J, Mauricio JC, Moreno J, García-Martínez T. Food Microbiol; 2020 Aug 16; 89():103431. PubMed ID: 32138989 [Abstract] [Full Text] [Related]
5. Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Mendes-Ferreira A, del Olmo M, García-Martínez J, Jiménez-Martí E, Mendes-Faia A, Pérez-Ortín JE, Leão C. Appl Environ Microbiol; 2007 May 16; 73(9):3049-60. PubMed ID: 17337556 [Abstract] [Full Text] [Related]
6. Biological Processes Highlighted in Saccharomyces cerevisiae during the Sparkling Wines Elaboration. González-Jiménez MDC, García-Martínez T, Puig-Pujol A, Capdevila F, Moreno-García J, Moreno J, Mauricio JC. Microorganisms; 2020 Aug 11; 8(8):. PubMed ID: 32796563 [Abstract] [Full Text] [Related]
7. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Curiel JA, Salvadó Z, Tronchoni J, Morales P, Rodrigues AJ, Quirós M, Gonzalez R. Microb Cell Fact; 2016 Sep 15; 15(1):156. PubMed ID: 27627879 [Abstract] [Full Text] [Related]
8. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. Duc C, Pradal M, Sanchez I, Noble J, Tesnière C, Blondin B. PLoS One; 2017 Sep 15; 12(9):e0184838. PubMed ID: 28922393 [Abstract] [Full Text] [Related]
9. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. Li R, Xiong G, Yuan S, Wu Z, Miao Y, Weng P. World J Microbiol Biotechnol; 2017 Nov 03; 33(11):206. PubMed ID: 29101531 [Abstract] [Full Text] [Related]
10. Torulaspora delbrueckii for secondary fermentation in sparkling wine production. Canonico L, Comitini F, Ciani M. Food Microbiol; 2018 Sep 03; 74():100-106. PubMed ID: 29706323 [Abstract] [Full Text] [Related]
11. Influence of fermentation conditions on the secretion of seripauperin 5 (PAU5) by industrial sparkling wine strains of Saccharomyces cerevisiae. Mann MA, Frisch LM, Vogel RF, Niessen L. Food Res Int; 2021 Jan 03; 139():109912. PubMed ID: 33509479 [Abstract] [Full Text] [Related]
12. Proteomic evolution of a wine yeast during the first hours of fermentation. Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM. FEMS Yeast Res; 2008 Nov 03; 8(7):1137-46. PubMed ID: 18503542 [Abstract] [Full Text] [Related]
13. Biodiversity of autolytic ability in flocculent Saccharomyces cerevisiae strains suitable for traditional sparkling wine fermentation. Perpetuini G, Di Gianvito P, Arfelli G, Schirone M, Corsetti A, Tofalo R, Suzzi G. Yeast; 2016 Jul 03; 33(7):303-12. PubMed ID: 26804203 [Abstract] [Full Text] [Related]
14. Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Penacho V, Blondin B, Valero E, Gonzalez R. Biotechnol Prog; 2012 Jul 03; 28(2):327-36. PubMed ID: 22065482 [Abstract] [Full Text] [Related]
15. Autophagy gene overexpression in Saccharomyces cerevisiae perturbs subcellular organellar function and accumulates ROS to accelerate cell death with relevance to sparkling wine production. Preiss R, Tyrawa C, van der Merwe G. Appl Microbiol Biotechnol; 2018 Oct 03; 102(19):8447-8464. PubMed ID: 30120525 [Abstract] [Full Text] [Related]
16. Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method. Martínez-Rodríguez AJ, Carrascosa AV, Martín-Alvarez PJ, Moreno-Arribas V, Polo MC. J Ind Microbiol Biotechnol; 2002 Dec 03; 29(6):314-22. PubMed ID: 12483471 [Abstract] [Full Text] [Related]
17. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. Barbosa C, García-Martínez J, Pérez-Ortín JE, Mendes-Ferreira A. PLoS One; 2015 Dec 03; 10(4):e0122709. PubMed ID: 25884705 [Abstract] [Full Text] [Related]
18. Protein synthesis of Btn2 under pronounced translation repression during the process of alcoholic fermentation and wine-making in yeast. Kato S, Yamauchi Y, Izawa S. Appl Microbiol Biotechnol; 2018 Nov 03; 102(22):9669-9677. PubMed ID: 30141081 [Abstract] [Full Text] [Related]
19. Production technologies for reduced alcoholic wines. Schmidtke LM, Blackman JW, Agboola SO. J Food Sci; 2012 Jan 03; 77(1):R25-41. PubMed ID: 22260123 [Abstract] [Full Text] [Related]
20. Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of Saccharomyces cerevisiae and interspecies hybrids. Zuchowska M, Jaenicke E, König H, Claus H. Yeast; 2015 Nov 03; 32(11):657-69. PubMed ID: 26202678 [Abstract] [Full Text] [Related] Page: [Next] [New Search]