These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 22138982

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.
    Tsuge Y, Uematsu K, Yamamoto S, Suda M, Yukawa H, Inui M.
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5573-82. PubMed ID: 25808520
    [Abstract] [Full Text] [Related]

  • 5. Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux.
    Wang YY, Zhang F, Xu JZ, Zhang WG, Chen XL, Liu LM.
    Int J Mol Sci; 2019 Apr 24; 20(8):. PubMed ID: 31022947
    [Abstract] [Full Text] [Related]

  • 6. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping.
    Xu JZ, Ruan HZ, Chen XL, Zhang F, Zhang W.
    Microb Cell Fact; 2019 Apr 03; 18(1):65. PubMed ID: 30943966
    [Abstract] [Full Text] [Related]

  • 7. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z, Wang C, Chen Y, Zhang K, Xu H, Cai H, Chen Z.
    Biotechnol Prog; 2015 Apr 03; 31(1):12-9. PubMed ID: 25311136
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J, Han M, Zhang J, Guo Y, Zhang W.
    Amino Acids; 2014 Sep 03; 46(9):2165-75. PubMed ID: 24879631
    [Abstract] [Full Text] [Related]

  • 11. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X.
    Microb Cell Fact; 2016 Aug 12; 15(1):141. PubMed ID: 27520031
    [Abstract] [Full Text] [Related]

  • 12. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.
    Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B.
    Appl Environ Microbiol; 2013 Sep 12; 79(18):5566-75. PubMed ID: 23835179
    [Abstract] [Full Text] [Related]

  • 13. Application of leucine dehydrogenase Bcd from Bacillus subtilis for l-valine synthesis in Escherichia coli under microaerobic conditions.
    Savrasova EA, Stoynova NV.
    Heliyon; 2019 Apr 12; 5(4):e01406. PubMed ID: 30993221
    [Abstract] [Full Text] [Related]

  • 14. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions.
    Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H.
    J Mol Microbiol Biotechnol; 2004 Apr 12; 8(4):243-54. PubMed ID: 16179801
    [Abstract] [Full Text] [Related]

  • 15. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions.
    Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H.
    Appl Environ Microbiol; 2012 Jun 12; 78(12):4447-57. PubMed ID: 22504802
    [Abstract] [Full Text] [Related]

  • 16. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation.
    Hao Y, Ma Q, Liu X, Fan X, Men J, Wu H, Jiang S, Tian D, Xiong B, Xie X.
    Metab Eng; 2020 Nov 12; 62():198-206. PubMed ID: 32961297
    [Abstract] [Full Text] [Related]

  • 17. Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum.
    Wang X, Yang H, Zhou W, Liu J, Xu N.
    J Microbiol Biotechnol; 2019 Aug 28; 29(8):1288-1298. PubMed ID: 31370116
    [Abstract] [Full Text] [Related]

  • 18. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate.
    Litsanov B, Brocker M, Bott M.
    Appl Environ Microbiol; 2012 May 28; 78(9):3325-37. PubMed ID: 22389371
    [Abstract] [Full Text] [Related]

  • 19. Corynebacterium glutamicum tailored for efficient isobutanol production.
    Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ.
    Appl Environ Microbiol; 2011 May 28; 77(10):3300-10. PubMed ID: 21441331
    [Abstract] [Full Text] [Related]

  • 20. [Metabolic shift of Corynebacterium acetoacidophilum-deltaldh under oxygen deprivation conditions].
    Yang Q, Zheng P, Yu F, Liu W, Sun Z.
    Sheng Wu Gong Cheng Xue Bao; 2014 Mar 28; 30(3):435-44. PubMed ID: 25007579
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.