These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine. Gökmen V, Kocadağlı T, Göncüoğlu N, Mogol BA. Food Chem; 2012 May 01; 132(1):168-74. PubMed ID: 26434276 [Abstract] [Full Text] [Related]
5. Acrylamide formation from asparagine under low-moisture Maillard reaction conditions. 1. Physical and chemical aspects in crystalline model systems. Robert F, Vuataz G, Pollien P, Saucy F, Alonso MI, Bauwens I, Blank I. J Agric Food Chem; 2004 Nov 03; 52(22):6837-42. PubMed ID: 15506824 [Abstract] [Full Text] [Related]
8. A simplified approach for the kinetic characterization of acrylamide formation in fructose-asparagine model system. Gökmen V, Senyuva HZ. Food Addit Contam; 2006 Apr 03; 23(4):348-54. PubMed ID: 16546881 [Abstract] [Full Text] [Related]
14. Study on formation of acrylamide in asparagine-sugar microwave heating systems using UPLC-MS/MS analytical method. Zhang Y, Fang H, Zhang Y. Food Chem; 2008 May 15; 108(2):542-50. PubMed ID: 26059132 [Abstract] [Full Text] [Related]
15. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage. Oral RA, Dogan M, Sarioglu K. Food Chem; 2014 Jan 01; 142():423-9. PubMed ID: 24001861 [Abstract] [Full Text] [Related]
16. Conversion of 3-aminopropionamide and 3-alkylaminopropionamides into acrylamide in model systems. Zamora R, Delgado RM, Hidalgo FJ. Mol Nutr Food Res; 2009 Dec 01; 53(12):1512-20. PubMed ID: 19746374 [Abstract] [Full Text] [Related]