These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 22149002
1. Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum. Clarke SG, Phillips AT, Bull AM. Comput Methods Biomech Biomed Engin; 2013; 16(7):717-24. PubMed ID: 22149002 [Abstract] [Full Text] [Related]
2. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model. Hao Z, Wan C, Gao X, Ji T. J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331 [Abstract] [Full Text] [Related]
3. Contact finite element stress analysis of the hip joint. Rapperport DJ, Carter DR, Schurman DJ. J Orthop Res; 1985 Oct; 3(4):435-46. PubMed ID: 4067702 [Abstract] [Full Text] [Related]
4. Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain. Ghosh R, Pal B, Ghosh D, Gupta S. Comput Methods Biomech Biomed Engin; 2015 Oct; 18(7):697-710. PubMed ID: 24156480 [Abstract] [Full Text] [Related]
5. Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects. Sánchez Egea AJ, Valera M, Parraga Quiroga JM, Proubasta I, Noailly J, Lacroix D. Clin Biomech (Bristol); 2014 Apr; 29(4):444-50. PubMed ID: 24530154 [Abstract] [Full Text] [Related]
6. Load transfer across the pelvic bone. Dalstra M, Huiskes R. J Biomech; 1995 Jun; 28(6):715-24. PubMed ID: 7601870 [Abstract] [Full Text] [Related]
7. Influence of Different Boundary Conditions in Finite Element Analysis on Pelvic Biomechanical Load Transmission. Hu P, Wu T, Wang HZ, Qi XZ, Yao J, Cheng XD, Chen W, Zhang YZ. Orthop Surg; 2017 Feb; 9(1):115-122. PubMed ID: 28300359 [Abstract] [Full Text] [Related]
8. The importance of femur/acetabulum cartilage in the biomechanics of the intact hip: experimental and numerical assessment. Duarte RJ, Ramos A, Completo A, Relvas C, Simões JA. Comput Methods Biomech Biomed Engin; 2015 Feb; 18(8):880-9. PubMed ID: 24261321 [Abstract] [Full Text] [Related]
9. A novel modelling and simulation method of hip joint surface contact stress. Wang M, Wang L, Li P, Fu Y. Bioengineered; 2017 Jan 02; 8(1):105-112. PubMed ID: 27696938 [Abstract] [Full Text] [Related]
10. The effects of musculoskeletal loading regimes on numerical evaluations of acetabular component. Mukherjee K, Gupta S. Proc Inst Mech Eng H; 2016 Oct 02; 230(10):918-29. PubMed ID: 27475907 [Abstract] [Full Text] [Related]
11. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis. Chegini S, Beck M, Ferguson SJ. J Orthop Res; 2009 Feb 02; 27(2):195-201. PubMed ID: 18752280 [Abstract] [Full Text] [Related]
12. Implementing Machine Learning approaches for accelerated prediction of bone strain in acetabulum of a hip joint. Nimmal Haribabu G, Basu B. J Mech Behav Biomed Mater; 2024 May 02; 153():106495. PubMed ID: 38460455 [Abstract] [Full Text] [Related]
13. Anatomical and biomechanical investigations of the iliotibial tract. Birnbaum K, Siebert CH, Pandorf T, Schopphoff E, Prescher A, Niethard FU. Surg Radiol Anat; 2004 Dec 02; 26(6):433-46. PubMed ID: 15378277 [Abstract] [Full Text] [Related]
14. Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study. Nguyen VH, Rosi G, Naili S, Michel A, Raffa ML, Bosc R, Meningaud JP, Chappard C, Takano N, Haiat G. Comput Methods Biomech Biomed Engin; 2017 Sep 02; 20(12):1312-1325. PubMed ID: 28768422 [Abstract] [Full Text] [Related]
15. Effect of periacetabular osteotomy for acetabular dysplasia clarified by three-dimensional finite element analysis. Zhao X, Chosa E, Totoribe K, Deng G. J Orthop Sci; 2010 Sep 02; 15(5):632-40. PubMed ID: 20953924 [Abstract] [Full Text] [Related]
16. The effect of stem structure on stress distribution of a custom-made hip prosthesis. Li X, Li D, Lian Q, Guo H, Jin Z. Proc Inst Mech Eng H; 2010 Nov 02; 224(11):1275-84. PubMed ID: 21218690 [Abstract] [Full Text] [Related]
17. Numerical simulations of the 3D virtual model of the human hip joint, using finite element method. Grecu D, Pucalev I, Negru M, Tarniţă DN, Ionovici N, Diţă R. Rom J Morphol Embryol; 2010 Nov 02; 51(1):151-5. PubMed ID: 20191136 [Abstract] [Full Text] [Related]
18. Mechanical strains passing through the acetabular labrum modify its shape during hip motion: an anatomical study. Ollivier M, Le Corroller T, Parratte S, Chabrand P, Argenson JN, Gagey O. Knee Surg Sports Traumatol Arthrosc; 2017 Jun 02; 25(6):1967-1974. PubMed ID: 28314887 [Abstract] [Full Text] [Related]
19. Finite element analysis of sliding distance and contact mechanics of hip implant under dynamic walking conditions. Gao Y, Jin Z, Wang L, Wang M. Proc Inst Mech Eng H; 2015 Jun 02; 229(6):469-74. PubMed ID: 25963387 [Abstract] [Full Text] [Related]
20. Bone remodelling in the natural acetabulum is influenced by muscle force-induced bone stress. Fernandez J, Sartori M, Lloyd D, Munro J, Shim V. Int J Numer Method Biomed Eng; 2014 Jan 02; 30(1):28-41. PubMed ID: 23982908 [Abstract] [Full Text] [Related] Page: [Next] [New Search]