These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
493 related items for PubMed ID: 22149810
1. Sedimentation of a charged colloidal sphere in a charged cavity. Keh HJ, Cheng TF. J Chem Phys; 2011 Dec 07; 135(21):214706. PubMed ID: 22149810 [Abstract] [Full Text] [Related]
2. Sedimentation Velocity and Potential in Concentrated Suspensions of Charged Spheres with Arbitrary Double-Layer Thickness. Keh HJ, Ding JM. J Colloid Interface Sci; 2000 Jul 15; 227(2):540-552. PubMed ID: 10873344 [Abstract] [Full Text] [Related]
3. Sedimentation of a charged porous particle in a charged cavity. Chang YJ, Keh HJ. J Phys Chem B; 2013 Oct 10; 117(40):12319-27. PubMed ID: 24041255 [Abstract] [Full Text] [Related]
6. Diffusiophoresis in a suspension of charge-regulating colloidal spheres. Keh HJ, Li YL. Langmuir; 2007 Jan 30; 23(3):1061-72. PubMed ID: 17241015 [Abstract] [Full Text] [Related]
9. Sedimentation of a Charged Soft Sphere within a Charged Spherical Cavity. Lin YJ, Keh HJ. Molecules; 2024 Jun 28; 29(13):. PubMed ID: 38999039 [Abstract] [Full Text] [Related]
10. Electrokinetic motion of a charged colloidal sphere in a spherical cavity with magnetic fields. Hsieh TH, Keh HJ. J Chem Phys; 2011 Jan 28; 134(4):044125. PubMed ID: 21280705 [Abstract] [Full Text] [Related]
11. Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness. Chen WJ, Keh HJ. J Phys Chem B; 2013 Aug 22; 117(33):9757-67. PubMed ID: 23898800 [Abstract] [Full Text] [Related]
12. The Electrophoretic Mobility and Electric Conductivity of a Concentrated Suspension of Colloidal Spheres with Arbitrary Double-Layer Thickness. Ding JM, Keh HJ. J Colloid Interface Sci; 2001 Apr 01; 236(1):180-193. PubMed ID: 11254344 [Abstract] [Full Text] [Related]
13. Electrophoretic motion of a spherical particle in a converging-diverging nanotube. Qian S, Wang A, Afonien JK. J Colloid Interface Sci; 2006 Nov 15; 303(2):579-92. PubMed ID: 16979648 [Abstract] [Full Text] [Related]
14. Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions and arbitrary double-layer thickness. Keh HJ, Hsieh TH. Langmuir; 2008 Jan 15; 24(2):390-8. PubMed ID: 18085803 [Abstract] [Full Text] [Related]
15. Magnetohydrodynamic motion of a colloidal sphere with self-electrochemical surface reactions in a spherical cavity. Hsieh TH, Keh HJ. J Chem Phys; 2013 Feb 21; 138(7):074105. PubMed ID: 23444995 [Abstract] [Full Text] [Related]
18. Diffusiophoretic mobility of charged porous spheres in electrolyte gradients. Wei YK, Keh HJ. J Colloid Interface Sci; 2004 Jan 01; 269(1):240-50. PubMed ID: 14651917 [Abstract] [Full Text] [Related]
19. Electroosmotic velocity and electric conductivity in a fibrous porous medium in the transverse direction. Keh HJ, Wu YY. J Phys Chem B; 2011 Jul 28; 115(29):9168-78. PubMed ID: 21671618 [Abstract] [Full Text] [Related]
20. Diffusiophoresis of a Charged Porous Particle in a Charged Cavity. Chiu YC, Keh HJ. J Phys Chem B; 2018 Oct 25; 122(42):9803-9814. PubMed ID: 30280902 [Abstract] [Full Text] [Related] Page: [Next] [New Search]