These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 22154840
1. Longitudinal effects of fat and lean mass on bone accrual in infants. Sudhagoni RG, Wey HE, Djira GD, Specker BL. Bone; 2012 Mar; 50(3):638-42. PubMed ID: 22154840 [Abstract] [Full Text] [Related]
2. Relationships of appendicular LMI and total body LMI to bone mass and physical activity levels in a birth cohort of New Zealand five-year olds. Goulding A, Taylor RW, Grant AM, Jones S, Taylor BJ, Williams SM. Bone; 2009 Sep; 45(3):455-9. PubMed ID: 19450717 [Abstract] [Full Text] [Related]
3. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. J Bone Miner Res; 1997 Sep; 12(9):1453-62. PubMed ID: 9286762 [Abstract] [Full Text] [Related]
4. Umbilical venous IGF-1 concentration, neonatal bone mass, and body composition. Javaid MK, Godfrey KM, Taylor P, Shore SR, Breier B, Arden NK, Cooper C. J Bone Miner Res; 2004 Jan; 19(1):56-63. PubMed ID: 14753737 [Abstract] [Full Text] [Related]
5. Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys. Ginty F, Rennie KL, Mills L, Stear S, Jones S, Prentice A. Bone; 2005 Jan; 36(1):101-10. PubMed ID: 15664008 [Abstract] [Full Text] [Related]
6. Determinants of bone mass in 10- to 26-year-old females: a twin study. Young D, Hopper JL, Nowson CA, Green RM, Sherwin AJ, Kaymakci B, Smid M, Guest CS, Larkins RG, Wark JD. J Bone Miner Res; 1995 Apr; 10(4):558-67. PubMed ID: 7610926 [Abstract] [Full Text] [Related]
7. Relationships of acylated and des-acyl ghrelin levels to bone mineralization in obese children and adolescents. Pacifico L, Anania C, Poggiogalle E, Osborn JF, Prossomariti G, Martino F, Chiesa C. Bone; 2009 Aug; 45(2):274-9. PubMed ID: 19393347 [Abstract] [Full Text] [Related]
8. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Calbet JA. Br J Sports Med; 2005 Sep; 39(9):611-6. PubMed ID: 16118297 [Abstract] [Full Text] [Related]
9. Influence of body composition on bone mass in postmenopausal osteoporotic women. Genaro PS, Pereira GA, Pinheiro MM, Szejnfeld VL, Martini LA. Arch Gerontol Geriatr; 2010 Sep; 51(3):295-8. PubMed ID: 20096469 [Abstract] [Full Text] [Related]
10. Extracurricular physical activity participation modifies the association between high TV watching and low bone mass. Vicente-Rodríguez G, Ortega FB, Rey-López JP, España-Romero V, Blay VA, Blay G, Martín-Matillas M, Moreno LA, AVENA-Zaragoza group. Bone; 2009 Nov; 45(5):925-30. PubMed ID: 19664736 [Abstract] [Full Text] [Related]
11. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone; 2004 Apr; 34(4):755-64. PubMed ID: 15050908 [Abstract] [Full Text] [Related]
12. Factors associated with bone mineral density and content in 7-year-old children. Hrafnkelsson H, Sigrudsson G, Magnusson KT, Johannsson E, Sigurdsson EL. Bone; 2010 Apr; 46(4):1058-62. PubMed ID: 19969116 [Abstract] [Full Text] [Related]
13. A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. Meng X, Zhu K, Devine A, Kerr DA, Binns CW, Prince RL. J Bone Miner Res; 2009 Nov; 24(11):1827-34. PubMed ID: 19419320 [Abstract] [Full Text] [Related]
14. Effect of growth hormone therapy and puberty on bone and body composition in children with idiopathic short stature and growth hormone deficiency. Högler W, Briody J, Moore B, Lu PW, Cowell CT. Bone; 2005 Nov; 37(5):642-50. PubMed ID: 16139578 [Abstract] [Full Text] [Related]
15. Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. Wey HE, Binkley TL, Beare TM, Wey CL, Specker BL. J Clin Endocrinol Metab; 2011 Jan; 96(1):106-14. PubMed ID: 20926531 [Abstract] [Full Text] [Related]
16. Relationship of total body fat mass to bone area in New Zealand five-year-olds. Goulding A, Taylor RW, Grant AM, Murdoch L, Williams SM, Taylor BJ. Calcif Tissue Int; 2008 Apr; 82(4):293-9. PubMed ID: 18404241 [Abstract] [Full Text] [Related]
17. The relationship among intrauterine growth, insulinlike growth factor I (IGF-I), IGF-binding protein-3, and bone mineral status in newborn infants. Akcakus M, Koklu E, Kurtoglu S, Kula M, Koklu SS. Am J Perinatol; 2006 Nov; 23(8):473-80. PubMed ID: 17094045 [Abstract] [Full Text] [Related]
18. Relationship of fat mass and serum estradiol with lower extremity bone in persons with chronic spinal cord injury. Bauman WA, Spungen AM, Wang J, Pierson RN, Schwartz E. Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1098-103. PubMed ID: 16418207 [Abstract] [Full Text] [Related]
19. Cross-sectional evidence of suppressed bone mineral accrual among female adolescent runners. Barrack MT, Rauh MJ, Nichols JF. J Bone Miner Res; 2010 Aug; 25(8):1850-7. PubMed ID: 20200979 [Abstract] [Full Text] [Related]
20. Effect of maturational timing on bone mineral content accrual from childhood to adulthood: evidence from 15 years of longitudinal data. Jackowski SA, Erlandson MC, Mirwald RL, Faulkner RA, Bailey DA, Kontulainen SA, Cooper DM, Baxter-Jones AD. Bone; 2011 May 01; 48(5):1178-85. PubMed ID: 21338727 [Abstract] [Full Text] [Related] Page: [Next] [New Search]