These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 22154840

  • 21. Body composition, bone mineral density, and circulating leptin levels in postmenopausal Turkish women.
    Sahin G, Polat G, Baethiş S, Milcan A, Baethdatoethlu O, Erdoethan C, Camdeviren H.
    Rheumatol Int; 2003 Mar; 23(2):87-91. PubMed ID: 12634942
    [Abstract] [Full Text] [Related]

  • 22. Age- and gender-related changes in body composition in Japanese subjects.
    Tsunenari T, Tsutsumi M, Ohno K, Yamamoto Y, Kawakatsu M, Shimogaki K, Negishi H, Sugimoto T, Fukase M, Fujita T.
    J Bone Miner Res; 1993 Apr; 8(4):397-402. PubMed ID: 8475789
    [Abstract] [Full Text] [Related]

  • 23. Relative importance of lean mass and fat mass on bone mineral density in a group of Lebanese postmenopausal women.
    El Hage R, Jacob C, Moussa E, Baddoura R.
    J Clin Densitom; 2011 Apr; 14(3):326-31. PubMed ID: 21600821
    [Abstract] [Full Text] [Related]

  • 24. Dual effect of adipose tissue on bone health during growth.
    Viljakainen HT, Pekkinen M, Saarnio E, Karp H, Lamberg-Allardt C, Mäkitie O.
    Bone; 2011 Feb; 48(2):212-7. PubMed ID: 20858556
    [Abstract] [Full Text] [Related]

  • 25. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus.
    Moseley KF, Dobrosielski DA, Stewart KJ, De Beur SM, Sellmeyer DE.
    Clin Endocrinol (Oxf); 2011 May; 74(5):565-71. PubMed ID: 21198741
    [Abstract] [Full Text] [Related]

  • 26. Bone density determinants in elderly women: a twin study.
    Flicker L, Hopper JL, Rodgers L, Kaymakci B, Green RM, Wark JD.
    J Bone Miner Res; 1995 Nov; 10(11):1607-13. PubMed ID: 8592936
    [Abstract] [Full Text] [Related]

  • 27. Association between bone, body composition and strength in premenarcheal girls and postmenopausal women.
    van Langendonck L, Claessens AL, Lysens R, Koninckx PR, Beunen G.
    Ann Hum Biol; 2004 Nov; 31(2):228-44. PubMed ID: 15204365
    [Abstract] [Full Text] [Related]

  • 28. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls--a 2-year longitudinal study.
    Wang Q, Alén M, Nicholson P, Suominen H, Koistinen A, Kröger H, Cheng S.
    Bone; 2007 May; 40(5):1196-202. PubMed ID: 17258519
    [Abstract] [Full Text] [Related]

  • 29. Determinants of bone density in 30- to 65-year-old women: a co-twin study.
    MacInnis RJ, Cassar C, Nowson CA, Paton LM, Flicker L, Hopper JL, Larkins RG, Wark JD.
    J Bone Miner Res; 2003 Sep; 18(9):1650-6. PubMed ID: 12968674
    [Abstract] [Full Text] [Related]

  • 30. Current physical activity is related to bone mineral density in males but not in females.
    Högström M, Nordström A, Alfredson H, Lorentzon R, Thorsen K, Nordström P.
    Int J Sports Med; 2007 May; 28(5):431-6. PubMed ID: 17111323
    [Abstract] [Full Text] [Related]

  • 31. In healthy elderly postmenopausal women variations in BMD and BMC at various skeletal sites are associated with differences in weight and lean body mass rather than by variations in habitual physical activity, strength or VO2max.
    Schöffl I, Kemmler W, Kladny B, Vonstengel S, Kalender WA, Engelke K.
    J Musculoskelet Neuronal Interact; 2008 May; 8(4):363-74. PubMed ID: 19147974
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes.
    Zhang Q, Ma G, Greenfield H, Zhu K, Du X, Foo LH, Hu X, Fraser DR.
    Br J Nutr; 2010 Mar; 103(5):714-23. PubMed ID: 19814838
    [Abstract] [Full Text] [Related]

  • 34. Impact of high fat and low lean mass phenotype on bone mineral content: A cross-sectional study of Chinese adolescent population.
    Ma X, Tian M, Liu J, Tong L, Ding W.
    Bone; 2024 Sep; 186():117170. PubMed ID: 38880171
    [Abstract] [Full Text] [Related]

  • 35. The influence of anthropometry and body composition on children's bone health: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark.
    Heidemann M, Holst R, Schou AJ, Klakk H, Husby S, Wedderkopp N, Mølgaard C.
    Calcif Tissue Int; 2015 Feb; 96(2):97-104. PubMed ID: 25539855
    [Abstract] [Full Text] [Related]

  • 36. The influence of dairy consumption, sedentary behaviour and physical activity on bone mass in Flemish children: a cross-sectional study.
    Sioen I, Michels N, Polfliet C, De Smet S, D'Haese S, Roggen I, Deschepper J, Goemaere S, Valtueña J, De Henauw S.
    BMC Public Health; 2015 Jul 28; 15():717. PubMed ID: 26216100
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Umbilical cord leptin predicts neonatal bone mass.
    Javaid MK, Godfrey KM, Taylor P, Robinson SM, Crozier SR, Dennison EM, Robinson JS, Breier BR, Arden NK, Cooper C.
    Calcif Tissue Int; 2005 May 28; 76(5):341-7. PubMed ID: 15864467
    [Abstract] [Full Text] [Related]

  • 40. Vitamin D status and physical activity interact to improve bone mass in adolescents. The HELENA Study.
    Valtueña J, Gracia-Marco L, Vicente-Rodríguez G, González-Gross M, Huybrechts I, Rey-López JP, Mouratidou T, Sioen I, Mesana MI, Martínez AE, Widhalm K, Moreno LA, HELENA Study Group.
    Osteoporos Int; 2012 Aug 28; 23(8):2227-37. PubMed ID: 22237816
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.