These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 22159457
1. Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors. Song K, Kong X, Liu X, Zhang Y, Zeng Q, Tu L, Shi Z, Zhang H. Chem Commun (Camb); 2012 Jan 28; 48(8):1156-8. PubMed ID: 22159457 [Abstract] [Full Text] [Related]
2. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q. Anal Chem; 2012 Jul 17; 84(14):6263-70. PubMed ID: 22816786 [Abstract] [Full Text] [Related]
3. An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Dai S, Wu S, Duan N, Chen J, Zheng Z, Wang Z. Biosens Bioelectron; 2017 May 15; 91():538-544. PubMed ID: 28086124 [Abstract] [Full Text] [Related]
4. Aptamer-modified nanoparticles as biosensors. Lönne M, Zhu G, Stahl F, Walter JG. Adv Biochem Eng Biotechnol; 2014 May 15; 140():121-54. PubMed ID: 23824145 [Abstract] [Full Text] [Related]
5. Highly sensitive optical biosensor for thrombin based on structure switching aptamer-luminescent silica nanoparticles. Babu E, Mareeswaran PM, Rajagopal S. J Fluoresc; 2013 Jan 15; 23(1):137-46. PubMed ID: 22965479 [Abstract] [Full Text] [Related]
6. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Ouyang Q, Wang L, Ahmad W, Rong Y, Li H, Hu Y, Chen Q. Food Chem; 2021 Jul 01; 349():129157. PubMed ID: 33578248 [Abstract] [Full Text] [Related]
7. A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Wu S, Liu L, Duan N, Wang W, Yu Q, Wang Z. Mikrochim Acta; 2018 Oct 05; 185(11):497. PubMed ID: 30291459 [Abstract] [Full Text] [Related]
8. Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2+-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods. Cheng K, Zhang J, Zhang L, Wang L, Chen H. Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan 15; 171():168-173. PubMed ID: 27526340 [Abstract] [Full Text] [Related]
9. Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Lin Z, Chen L, Zhu X, Qiu B, Chen G. Chem Commun (Camb); 2010 Aug 14; 46(30):5563-5. PubMed ID: 20532276 [Abstract] [Full Text] [Related]
10. Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Liu X, Ren J, Su L, Gao X, Tang Y, Ma T, Zhu L, Li J. Biosens Bioelectron; 2017 Jan 15; 87():203-208. PubMed ID: 27566392 [Abstract] [Full Text] [Related]
11. Detection of Aβ oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe3O4 magnetic nanoparticles and BaYF5:Yb,Er nanoparticles as upconversion fluorescence labels. Jiang LF, Chen BC, Chen B, Li XJ, Liao HL, Huang HM, Guo ZJ, Zhang WY, Wu L. Talanta; 2017 Aug 01; 170():350-357. PubMed ID: 28501180 [Abstract] [Full Text] [Related]
12. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles. Xie L, You L, Cao X. Spectrochim Acta A Mol Biomol Spectrosc; 2013 May 15; 109():110-5. PubMed ID: 23501724 [Abstract] [Full Text] [Related]
13. A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Ma L, Liu F, Lei Z, Wang Z. Biosens Bioelectron; 2017 Jan 15; 87():638-645. PubMed ID: 27619527 [Abstract] [Full Text] [Related]
14. An innovative solid-phase biosensor for rapid on-site detection of N-nitrosodimethylamine incorporating zein film and upconversion nanoparticles. Ouyang Q, Rong Y, Wang B, Ahmad W, Liu S, Chen Q. Food Chem; 2024 Jan 01; 430():136981. PubMed ID: 37541034 [Abstract] [Full Text] [Related]
15. A sensitive gold nanoparticles sensing platform based on resonance energy transfer for chemiluminescence light on detection of biomolecules. Qin G, Zhao S, Huang Y, Jiang J, Liu YM. Biosens Bioelectron; 2013 Aug 15; 46():119-23. PubMed ID: 23524140 [Abstract] [Full Text] [Related]
16. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline. Zhang H, Fang C, Wu S, Duan N, Wang Z. Anal Biochem; 2015 Nov 15; 489():44-9. PubMed ID: 26302361 [Abstract] [Full Text] [Related]
17. Simultaneous Visualization and Quantitation of Multiple Steroid Hormones Based on Signal-Amplified Biosensing with Duplex Molecular Recognition. Tan Y, Hu X, Liu M, Liu X, Lv X, Li Z, Wang J, Yuan Q. Chemistry; 2017 Aug 04; 23(44):10683-10689. PubMed ID: 28608953 [Abstract] [Full Text] [Related]
18. Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Luo P, Liu Y, Xia Y, Xu H, Xie G. Biosens Bioelectron; 2014 Apr 15; 54():217-21. PubMed ID: 24287407 [Abstract] [Full Text] [Related]
19. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer. Zhu X, Zhang Y, Yang W, Liu Q, Lin Z, Qiu B, Chen G. Anal Chim Acta; 2011 Jan 17; 684(1-2):121-5. PubMed ID: 21167993 [Abstract] [Full Text] [Related]
20. Adenosine detection by using gold nanoparticles and designed aptamer sequences. Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C. Analyst; 2009 Jul 17; 134(7):1355-60. PubMed ID: 19562201 [Abstract] [Full Text] [Related] Page: [Next] [New Search]