These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 22162819
1. Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study. Zonios G, Dimou A. Biomed Opt Express; 2011 Dec 01; 2(12):3284-94. PubMed ID: 22162819 [Abstract] [Full Text] [Related]
3. Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media. Yudovsky D, Pilon L. Appl Opt; 2009 Dec 10; 48(35):6670-83. PubMed ID: 20011007 [Abstract] [Full Text] [Related]
4. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam. Wang A, Lu R, Xie L. Appl Opt; 2016 Jan 01; 55(1):95-103. PubMed ID: 26835627 [Abstract] [Full Text] [Related]
5. A comparative study of analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin-based phantoms and Monte Carlo experiments. Bahl A, Segaud S, Xie Y, Shapey J, Bergholt MS, Vercauteren T. J Biophotonics; 2024 Jun 01; 17(6):e202300536. PubMed ID: 38616109 [Abstract] [Full Text] [Related]
6. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. Liu Q, Ramanujam N. J Opt Soc Am A Opt Image Sci Vis; 2007 Apr 01; 24(4):1011-25. PubMed ID: 17361287 [Abstract] [Full Text] [Related]
7. Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory. Wang LV, Jacques SL. Comput Methods Programs Biomed; 2000 Mar 01; 61(3):163-70. PubMed ID: 10710179 [Abstract] [Full Text] [Related]
10. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. Wang L, Jacques SL. J Opt Soc Am A Opt Image Sci Vis; 1993 Aug 01; 10(8):1746-52. PubMed ID: 8350159 [Abstract] [Full Text] [Related]
11. Diffuse reflectance from turbid media: an analytical model of photon migration. Wu J, Partovi F, Field MS, Rava RP. Appl Opt; 1993 Mar 01; 32(7):1115-21. PubMed ID: 20820241 [Abstract] [Full Text] [Related]
12. Finite element simulation of light transfer in turbid media under structured illumination. Hu D, Lu R, Ying Y. Appl Opt; 2017 Jul 20; 56(21):6035-6042. PubMed ID: 29047929 [Abstract] [Full Text] [Related]
13. Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media: erratum. Pilon L, Bhowmik A, Heng RL, Yudovsky D. Appl Opt; 2015 Jul 01; 54(19):6116-7. PubMed ID: 26193161 [Abstract] [Full Text] [Related]
14. Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy. Tseng TY, Chen CY, Li YS, Sung KB. Biomed Opt Express; 2011 Mar 16; 2(4):901-14. PubMed ID: 21483612 [Abstract] [Full Text] [Related]
15. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. Pham TH, Bevilacqua F, Spott T, Dam JS, Tromberg BJ, Andersson-Engels S. Appl Opt; 2000 Dec 01; 39(34):6487-97. PubMed ID: 18354662 [Abstract] [Full Text] [Related]
16. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum. Liu Q, Zhu C, Ramanujam N. J Biomed Opt; 2003 Apr 01; 8(2):223-36. PubMed ID: 12683848 [Abstract] [Full Text] [Related]
17. Non-contact optical spectroscopy for tumor-sensitive diffuse reflectance and fluorescence measurements on murine subcutaneous tissue models: Monte Carlo modeling and experimental validations. Hasan MZ, Saha PS, Korfhage MO, Zhu C. Biomed Opt Express; 2023 Oct 01; 14(10):5418-5439. PubMed ID: 37854556 [Abstract] [Full Text] [Related]
19. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source. Kienle A, Patterson MS. Phys Med Biol; 1997 Sep 01; 42(9):1801-19. PubMed ID: 9308085 [Abstract] [Full Text] [Related]
20. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation. Chen YW, Chen CC, Huang PJ, Tseng SH. Biomed Opt Express; 2016 Apr 01; 7(4):1496-510. PubMed ID: 27446671 [Abstract] [Full Text] [Related] Page: [Next] [New Search]