These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
405 related items for PubMed ID: 22168680
21. Estimates of ligand-binding affinities supported by quantum mechanical methods. Söderhjelm P, Kongsted J, Genheden S, Ryde U. Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794 [Abstract] [Full Text] [Related]
22. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. Geerke DP, van Gunsteren WF. J Phys Chem B; 2007 Jun 14; 111(23):6425-36. PubMed ID: 17508737 [Abstract] [Full Text] [Related]
23. Coarse-grained time-dependent density functional simulation of charge transfer in complex systems: application to hole transfer in DNA. Kubar T, Elstner M. J Phys Chem B; 2010 Sep 02; 114(34):11221-40. PubMed ID: 20687528 [Abstract] [Full Text] [Related]
24. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. Riccardi D, Schaefer P, Cui Q. J Phys Chem B; 2005 Sep 22; 109(37):17715-33. PubMed ID: 16853267 [Abstract] [Full Text] [Related]
25. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH. J Chem Phys; 2013 Nov 14; 139(18):184103. PubMed ID: 24320250 [Abstract] [Full Text] [Related]
26. Protein-ligand binding free energies from exhaustive docking. Purisima EO, Hogues H. J Phys Chem B; 2012 Jun 14; 116(23):6872-9. PubMed ID: 22432509 [Abstract] [Full Text] [Related]
27. A polarizable continuum approach for the study of heterogeneous dielectric environments. Iozzi MF, Cossi M, Improta R, Rega N, Barone V. J Chem Phys; 2006 May 14; 124(18):184103. PubMed ID: 16709093 [Abstract] [Full Text] [Related]
28. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins. Liu J, Zhu T, Wang X, He X, Zhang JZ. J Chem Theory Comput; 2015 Dec 08; 11(12):5897-905. PubMed ID: 26642993 [Abstract] [Full Text] [Related]
29. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations. Cauët E, Bogatko S, Weare JH, Fulton JL, Schenter GK, Bylaska EJ. J Chem Phys; 2010 May 21; 132(19):194502. PubMed ID: 20499974 [Abstract] [Full Text] [Related]
30. Nonuniform charge scaling (NUCS): a practical approximation of solvent electrostatic screening in proteins. Schwarzl SM, Huang D, Smith JC, Fischer S. J Comput Chem; 2005 Oct 21; 26(13):1359-71. PubMed ID: 16021598 [Abstract] [Full Text] [Related]
31. Comparison of frozen-density embedding and discrete reaction field solvent models for molecular properties. Jacob CR, Neugebauer J, Jensen L, Visscher L. Phys Chem Chem Phys; 2006 May 28; 8(20):2349-59. PubMed ID: 16710483 [Abstract] [Full Text] [Related]
32. Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent. Nakano H, Yamamoto T. J Chem Phys; 2012 Apr 07; 136(13):134107. PubMed ID: 22482540 [Abstract] [Full Text] [Related]
33. Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. Sagui C, Pedersen LG, Darden TA. J Chem Phys; 2004 Jan 01; 120(1):73-87. PubMed ID: 15267263 [Abstract] [Full Text] [Related]
34. Combining ab initio quantum mechanics with a dipole-field model to describe acid dissociation reactions in water: first-principles free energy and entropy calculations. Maurer P, Iftimie R. J Chem Phys; 2010 Feb 21; 132(7):074112. PubMed ID: 20170220 [Abstract] [Full Text] [Related]
35. What governs the charge transfer in DNA? The role of DNA conformation and environment. Kubar T, Elstner M. J Phys Chem B; 2008 Jul 24; 112(29):8788-98. PubMed ID: 18582109 [Abstract] [Full Text] [Related]
36. Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties. Beerepoot MT, Steindal AH, List NH, Kongsted J, Olsen JM. J Chem Theory Comput; 2016 Apr 12; 12(4):1684-95. PubMed ID: 26938368 [Abstract] [Full Text] [Related]
37. Hybrid density functional-molecular mechanics calculations for core-electron binding energies of glycine in water solution. Niskanen J, Arul Murugan N, Rinkevicius Z, Vahtras O, Li C, Monti S, Carravetta V, Agren H. Phys Chem Chem Phys; 2013 Jan 07; 15(1):244-54. PubMed ID: 23160171 [Abstract] [Full Text] [Related]
38. The Quality of the Embedding Potential Is Decisive for Minimal Quantum Region Size in Embedding Calculations: The Case of the Green Fluorescent Protein. Nåbo LJ, Olsen JMH, Martínez TJ, Kongsted J. J Chem Theory Comput; 2017 Dec 12; 13(12):6230-6236. PubMed ID: 29099597 [Abstract] [Full Text] [Related]
39. Solvent fluctuations drive the hole transfer in DNA: a mixed quantum-classical study. Kubar T, Kleinekathöfer U, Elstner M. J Phys Chem B; 2009 Oct 01; 113(39):13107-17. PubMed ID: 19725541 [Abstract] [Full Text] [Related]
40. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Ryde U, Söderhjelm P. Chem Rev; 2016 May 11; 116(9):5520-66. PubMed ID: 27077817 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]