These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Trends Biotechnol; 2008 Nov 17; 26(11):612-21. PubMed ID: 18804298 [Abstract] [Full Text] [Related]
27. Effect and mechanism of a new photodynamic therapy with glycoconjugated fullerene. Otake E, Sakuma S, Torii K, Maeda A, Ohi H, Yano S, Morita A. Photochem Photobiol; 2010 Nov 17; 86(6):1356-63. PubMed ID: 20796243 [Abstract] [Full Text] [Related]
28. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Vrouenraets MB, Visser GW, Snow GB, van Dongen GA. Anticancer Res; 2003 Nov 17; 23(1B):505-22. PubMed ID: 12680139 [Abstract] [Full Text] [Related]
29. Squaraine dyes for photodynamic therapy: mechanism of cytotoxicity and DNA damage induced by halogenated squaraine dyes plus light (>600 nm). Ramaiah D, Eckert I, Arun KT, Weidenfeller L, Epe B. Photochem Photobiol; 2004 Jan 17; 79(1):99-104. PubMed ID: 14974721 [Abstract] [Full Text] [Related]
30. In vivo detection of chemiluminescence to monitor photodynamic threshold dose for tumor treatment. Wei Y, Song J, Chen Q. Photochem Photobiol Sci; 2011 Jun 17; 10(6):1066-71. PubMed ID: 21416074 [Abstract] [Full Text] [Related]
31. Gold mining for PDT: Great expectations from tiny nanoparticles. Gamaleia NF, Shton IO. Photodiagnosis Photodyn Ther; 2015 Jun 17; 12(2):221-31. PubMed ID: 25818545 [Abstract] [Full Text] [Related]
32. Nanoparticles: their potential use in antibacterial photodynamic therapy. Perni S, Prokopovich P, Pratten J, Parkin IP, Wilson M. Photochem Photobiol Sci; 2011 May 17; 10(5):712-20. PubMed ID: 21380441 [Abstract] [Full Text] [Related]
33. Single aromatics sulfonamide substituted dibenzothiazole squaraines for tumor NIR imaging and efficient photodynamic therapy at low drug dose. Li JH, You PD, Lu F, Huang JT, Fu JL, Tang HY, Zhou CQ. J Photochem Photobiol B; 2023 Mar 17; 240():112653. PubMed ID: 36706664 [Abstract] [Full Text] [Related]
34. Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes. Arunkumar E, Forbes CC, Noll BC, Smith BD. J Am Chem Soc; 2005 Mar 16; 127(10):3288-9. PubMed ID: 15755140 [Abstract] [Full Text] [Related]
35. New photosensitizers for photodynamic therapy. Abrahamse H, Hamblin MR. Biochem J; 2016 Feb 15; 473(4):347-64. PubMed ID: 26862179 [Abstract] [Full Text] [Related]
36. An outline of the hundred-year history of PDT. Moan J, Peng Q. Anticancer Res; 2003 Feb 15; 23(5A):3591-600. PubMed ID: 14666654 [Abstract] [Full Text] [Related]
37. [New trends and safety of photodynamic therapy]. Osmałek T, Gośliński T, Mielcarek J, Osmałek E. Przegl Lek; 2012 Feb 15; 69(11):1205-8. PubMed ID: 23646448 [Abstract] [Full Text] [Related]
38. Deoxyribonucleoside-modified squaraines as near-IR viscosity sensors. Zhang Y, Yue X, Kim B, Yao S, Belfield KD. Chemistry; 2014 Jun 10; 20(24):7249-53. PubMed ID: 24839110 [Abstract] [Full Text] [Related]
39. Squaraine-derived rotaxanes: highly stable, fluorescent near-IR dyes. Arunkumar E, Fu N, Smith BD. Chemistry; 2006 Jun 02; 12(17):4684-90. PubMed ID: 16575935 [Abstract] [Full Text] [Related]
40. Dicyanomethylene Substituted Benzothiazole Squaraines: The Efficiency of Photodynamic Therapy In Vitro and In Vivo. Wei Y, Hu X, Shen L, Jin B, Liu X, Tan W, Shangguan D. EBioMedicine; 2017 Sep 02; 23():25-33. PubMed ID: 28811165 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]