These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


281 related items for PubMed ID: 22179879

  • 1. Subdiffraction scattered light imaging of gold nanoparticles using structured illumination.
    Chang BJ, Lin SH, Chou LJ, Chiang SY.
    Opt Lett; 2011 Dec 15; 36(24):4773-5. PubMed ID: 22179879
    [Abstract] [Full Text] [Related]

  • 2. Gold nanoparticles generated in ethosome bilayers, as revealed by cryo-electron-tomography.
    de la Presa P, Rueda T, del Puerto Morales M, Javier Chichón F, Arranz R, Valpuesta JM, Hernando A.
    J Phys Chem B; 2009 Mar 12; 113(10):3051-7. PubMed ID: 19708264
    [Abstract] [Full Text] [Related]

  • 3. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.
    Kuznetsov AI, Kiyan R, Chichkov BN.
    Opt Express; 2010 Sep 27; 18(20):21198-203. PubMed ID: 20941016
    [Abstract] [Full Text] [Related]

  • 4. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.
    Butet J, Bachelier G, Duboisset J, Bertorelle F, Russier-Antoine I, Jonin C, Benichou E, Brevet PF.
    Opt Express; 2010 Oct 11; 18(21):22314-23. PubMed ID: 20941132
    [Abstract] [Full Text] [Related]

  • 5. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD, Li GC, Dai QF, Ouyang M, Lan S, Gopal AV, Trofimov VA, Lysak TM.
    Opt Express; 2012 May 07; 20(10):10963-70. PubMed ID: 22565719
    [Abstract] [Full Text] [Related]

  • 6. Super-resolution differential interference contrast microscopy by structured illumination.
    Chen J, Xu Y, Lv X, Lai X, Zeng S.
    Opt Express; 2013 Jan 14; 21(1):112-21. PubMed ID: 23388901
    [Abstract] [Full Text] [Related]

  • 7. A method for achieving super-resolved widefield CARS microscopy.
    Hajek KM, Littleton B, Turk D, McIntyre TJ, Rubinsztein-Dunlop H.
    Opt Express; 2010 Aug 30; 18(18):19263-72. PubMed ID: 20940822
    [Abstract] [Full Text] [Related]

  • 8. Gold nanoparticles in biology: beyond toxicity to cellular imaging.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC.
    Acc Chem Res; 2008 Dec 30; 41(12):1721-30. PubMed ID: 18712884
    [Abstract] [Full Text] [Related]

  • 9. Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy.
    Pache C, Bocchio NL, Bouwens A, Villiger M, Berclaz C, Goulley J, Gibson MI, Santschi C, Lasser T.
    Opt Express; 2012 Sep 10; 20(19):21385-99. PubMed ID: 23037262
    [Abstract] [Full Text] [Related]

  • 10. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V, Astafyeva L, Jean B.
    Nanotechnology; 2009 Jun 03; 20(22):225105. PubMed ID: 19433875
    [Abstract] [Full Text] [Related]

  • 11. Coherence-controlled holographic microscope.
    Kolman P, Chmelík R.
    Opt Express; 2010 Oct 11; 18(21):21990-2003. PubMed ID: 20941100
    [Abstract] [Full Text] [Related]

  • 12. Artifacts resulting from imaging in scattering media: a theoretical prediction.
    Rohrbach A.
    Opt Lett; 2009 Oct 01; 34(19):3041-3. PubMed ID: 19794809
    [Abstract] [Full Text] [Related]

  • 13. Plasmonic chiral contrast agents for optical coherence tomography: numerical study.
    Mehta KB, Chen N.
    Opt Express; 2011 Aug 01; 19(16):14903-12. PubMed ID: 21934851
    [Abstract] [Full Text] [Related]

  • 14. Photothermal bubbles as optical scattering probes for imaging living cells.
    Hleb EY, Hu Y, Drezek RA, Hafner JH, Lapotko DO.
    Nanomedicine (Lond); 2008 Dec 01; 3(6):797-812. PubMed ID: 19025454
    [Abstract] [Full Text] [Related]

  • 15. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z, Hessler B, Ochoa J, Shon YS, Bonney C, Abate Y.
    Opt Express; 2011 Oct 10; 19(21):20865-75. PubMed ID: 21997096
    [Abstract] [Full Text] [Related]

  • 16. Structured illumination microscopy for in-vivo human retinal imaging: a theoretical assessment.
    Chetty S, Gruppetta S.
    Opt Express; 2012 Nov 05; 20(23):25700-10. PubMed ID: 23187388
    [Abstract] [Full Text] [Related]

  • 17. Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions.
    Zhu S, Chen TP, Cen ZH, Goh ES, Yu SF, Liu YC, Liu Y.
    Opt Express; 2010 Oct 11; 18(21):21926-31. PubMed ID: 20941092
    [Abstract] [Full Text] [Related]

  • 18. Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles.
    Wang K, Qiu X, Dong C, Ren J.
    Chembiochem; 2007 Jul 09; 8(10):1126-9. PubMed ID: 17506038
    [No Abstract] [Full Text] [Related]

  • 19. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications.
    Fairbairn N, Christofidou A, Kanaras AG, Newman TA, Muskens OL.
    Phys Chem Chem Phys; 2013 Mar 28; 15(12):4163-8. PubMed ID: 23183927
    [Abstract] [Full Text] [Related]

  • 20. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles.
    Reddy NK, Pérez-Juste J, Pastoriza-Santos I, Lang PR, Dhont JK, Liz-Marzán LM, Vermant J.
    ACS Nano; 2011 Jun 28; 5(6):4935-44. PubMed ID: 21545088
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.