These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 22180531

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation.
    Deniziak M, Sauter C, Becker HD, Paulus CA, Giegé R, Kern D.
    Nucleic Acids Res; 2007; 35(5):1421-31. PubMed ID: 17284460
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases.
    Hadd A, Perona JJ.
    J Mol Biol; 2014 Oct 23; 426(21):3619-33. PubMed ID: 25149203
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor.
    Guo LT, Helgadóttir S, Söll D, Ling J.
    Nucleic Acids Res; 2012 Sep 23; 40(16):7967-74. PubMed ID: 22661575
    [Abstract] [Full Text] [Related]

  • 7. Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging.
    Rogers KC, Söll D.
    J Mol Evol; 1995 May 23; 40(5):476-81. PubMed ID: 7783222
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
    Rogers MJ, Weygand-Durasević I, Schwob E, Sherman JM, Rogers KC, Adachi T, Inokuchi H, Söll D.
    Biochimie; 1993 May 23; 75(12):1083-90. PubMed ID: 8199243
    [Abstract] [Full Text] [Related]

  • 10. A single amidotransferase forms asparaginyl-tRNA and glutaminyl-tRNA in Chlamydia trachomatis.
    Raczniak G, Becker HD, Min B, Söll D.
    J Biol Chem; 2001 Dec 07; 276(49):45862-7. PubMed ID: 11585842
    [Abstract] [Full Text] [Related]

  • 11. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD, Bullock TL, Newberry KJ, Lipman RS, Hou YM, Beijer B, Sproat BS, Perona JJ.
    J Mol Biol; 2000 Jun 02; 299(2):431-46. PubMed ID: 10860750
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Identification of a glutaminyl-tRNA synthetase mutation Saccharomyces cerevisiae.
    Mitchell AP, Ludmerer SW.
    J Bacteriol; 1984 May 02; 158(2):530-4. PubMed ID: 6144664
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase.
    Gagnon Y, Lacoste L, Champagne N, Lapointe J.
    J Biol Chem; 1996 Jun 21; 271(25):14856-63. PubMed ID: 8662929
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
    Schwob E, Söll D.
    EMBO J; 1993 Dec 15; 12(13):5201-8. PubMed ID: 7505222
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.