These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


550 related items for PubMed ID: 22181386

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Nonequilibrium work fluctuations for oscillators in non-Markovian baths.
    Mai T, Dhar A.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061101. PubMed ID: 17677214
    [Abstract] [Full Text] [Related]

  • 3. Responses to applied forces and the Jarzynski equality in classical oscillator systems coupled to finite baths: an exactly solvable nondissipative nonergodic model.
    Hasegawa H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011145. PubMed ID: 21867150
    [Abstract] [Full Text] [Related]

  • 4. Stochastic Langevin equations: Markovian and non-Markovian dynamics.
    Farias RL, Ramos RO, da Silva LA.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031143. PubMed ID: 19905098
    [Abstract] [Full Text] [Related]

  • 5. Generalized Langevin equation with shear flow and its fluctuation-dissipation theorems derived from a Caldeira-Leggett Hamiltonian.
    Pelargonio S, Zaccone A.
    Phys Rev E; 2023 Jun; 107(6-1):064102. PubMed ID: 37464636
    [Abstract] [Full Text] [Related]

  • 6. Phase induced current in presence of nonequilibrium bath: A quantum approach.
    Bhattacharya S, Chaudhury P, Chattopadhyay S, Chaudhuri JR.
    J Chem Phys; 2008 Sep 28; 129(12):124708. PubMed ID: 19045049
    [Abstract] [Full Text] [Related]

  • 7. Non-Markovian work fluctuation theorem in crossed electric and magnetic fields.
    Jiménez-Aquino JI.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug 28; 92(2):022149. PubMed ID: 26382385
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Non-Markovian stochastic processes: colored noise.
    Łuczka J.
    Chaos; 2005 Jun 28; 15(2):26107. PubMed ID: 16035909
    [Abstract] [Full Text] [Related]

  • 11. Non-Markovian dynamics of quantum systems. I. Formalism and transport coefficients.
    Kanokov Z, Palchikov YV, Adamian GG, Antonenko NV, Scheid W.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan 28; 71(1 Pt 2):016121. PubMed ID: 15697672
    [Abstract] [Full Text] [Related]

  • 12. Quantum transport in a periodic symmetric potential of a driven quantum system.
    Bhattacharya S, Chaudhury P, Chattopadhyay S, Chaudhuri JR.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct 28; 80(4 Pt 1):041127. PubMed ID: 19905293
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Escape through an unstable limit cycle driven by multiplicative colored non-Gaussian and additive white Gaussian noises.
    Bag BC, Hu CK.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr 28; 75(4 Pt 1):042101. PubMed ID: 17500937
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Adaptive Gaussian mixture filter for Markovian jump nonlinear systems with colored measurement noises.
    Yang Y, Liang Y, Pan Q, Qin Y, Wang X.
    ISA Trans; 2018 Sep 28; 80():111-126. PubMed ID: 29861047
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Multiplicative cross-correlated noise induced escape rate from a metastable state.
    Chaudhuri JR, Chattopadhyay S, Banik SK.
    J Chem Phys; 2008 Apr 21; 128(15):154513. PubMed ID: 18433241
    [Abstract] [Full Text] [Related]

  • 20. Jarzynski equality in van der Pol and Rayleigh oscillators.
    Hasegawa H.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec 21; 84(6 Pt 1):061112. PubMed ID: 22304045
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.