These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 22191434

  • 1. Use of a new hybrid sol-gel zirconia matrix in the removal of the herbicide MCPA: a sorption/degradation process.
    Aronne A, Sannino F, Bonavolontà SR, Fanelli E, Mingione A, Pernice P, Spaccini R, Pirozzi D.
    Environ Sci Technol; 2012 Feb 07; 46(3):1755-63. PubMed ID: 22191434
    [Abstract] [Full Text] [Related]

  • 2. Oxidative degradation of different chlorinated phenoxyalkanoic acid herbicides by a hybrid ZrO2 gel-derived catalyst without light irradiation.
    Sannino F, Pernice P, Minieri L, Camandona GA, Aronne A, Pirozzi D.
    ACS Appl Mater Interfaces; 2015 Jan 14; 7(1):256-63. PubMed ID: 25479367
    [Abstract] [Full Text] [Related]

  • 3. Remediation of waters contaminated with MCPA by the yeasts Lipomyces starkeyi entrapped in a sol-gel zirconia matrix.
    Sannino F, Pirozzi D, Aronne A, Fanelli E, Spaccini R, Yousuf A, Pernice P.
    Environ Sci Technol; 2010 Dec 15; 44(24):9476-81. PubMed ID: 21077667
    [Abstract] [Full Text] [Related]

  • 4. Sorption, desorption, and degradation of (4-chloro-2-methylphenoxy)acetic acid in representative soils of the Danubian Lowland, Slovakia.
    Hiller E, Tatarková V, Šimonovičová A, Bartal' M.
    Chemosphere; 2012 Apr 15; 87(5):437-44. PubMed ID: 22206646
    [Abstract] [Full Text] [Related]

  • 5. Selection of a support matrix for the removal of some phenoxyacetic compounds in constructed wetlands systems.
    Dordio AV, Teimão J, Ramalho I, Carvalho AJ, Candeias AJ.
    Sci Total Environ; 2007 Jul 15; 380(1-3):237-46. PubMed ID: 17379272
    [Abstract] [Full Text] [Related]

  • 6. Removal of MCPA from aqueous solutions by acid-activated spent bleaching earth.
    Mahramanlioglu M, Kizilcikli I, Biçer IO, Tuncay M.
    J Environ Sci Health B; 2003 Nov 15; 38(6):813-27. PubMed ID: 14649711
    [Abstract] [Full Text] [Related]

  • 7. Adsorption and characterization of MCPA on DDTMA- and raw-montmorillonite: Surface sites involved.
    Santiago CC, Fernández MA, Torres Sánchez RM.
    J Environ Sci Health B; 2016 Nov 15; 51(4):245-53. PubMed ID: 26786275
    [Abstract] [Full Text] [Related]

  • 8. Sorption capacity of mesoporous metal oxides for the removal of MCPA from polluted waters.
    Addorisio V, Esposito S, Sannino F.
    J Agric Food Chem; 2010 Apr 28; 58(8):5011-6. PubMed ID: 20329794
    [Abstract] [Full Text] [Related]

  • 9. Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel.
    Biswas BK, Inoue J, Inoue K, Ghimire KN, Harada H, Ohto K, Kawakita H.
    J Hazard Mater; 2008 Jun 15; 154(1-3):1066-74. PubMed ID: 18093733
    [Abstract] [Full Text] [Related]

  • 10. Effect of dissolved organic compounds on the photodegradation of the herbicide MCPA in aqueous solution.
    Vione D, Khanra S, Das R, Minero C, Maurino V, Brigante M, Mailhot G.
    Water Res; 2010 Dec 15; 44(20):6053-62. PubMed ID: 20732707
    [Abstract] [Full Text] [Related]

  • 11. Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion.
    Pan BC, Zhang QR, Zhang WM, Pan BJ, Du W, Lv L, Zhang QJ, Xu ZW, Zhang QX.
    J Colloid Interface Sci; 2007 Jun 01; 310(1):99-105. PubMed ID: 17336317
    [Abstract] [Full Text] [Related]

  • 12. Preparation and characterization of the organic-inorganic hybrid membrane for biodiesel production.
    Shi W, He B, Ding J, Li J, Yan F, Liang X.
    Bioresour Technol; 2010 Mar 01; 101(5):1501-5. PubMed ID: 19656676
    [Abstract] [Full Text] [Related]

  • 13. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent.
    Ren Z, Zhang G, Chen JP.
    J Colloid Interface Sci; 2011 Jun 01; 358(1):230-7. PubMed ID: 21440898
    [Abstract] [Full Text] [Related]

  • 14. The OH-induced degradation mechanism of 4-chloro-2-methylphenoxyacetic acid (MCPA) with two forms in the water: a DFT comparison.
    Ren X, Sun Y, Wu Z, Meng F, Cui Z.
    Chemosphere; 2012 Jun 01; 88(1):39-48. PubMed ID: 22445957
    [Abstract] [Full Text] [Related]

  • 15. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid in water by using TiO2.
    Djebbar K, Zertal A, Sehili T.
    Environ Technol; 2006 Nov 01; 27(11):1191-7. PubMed ID: 17203600
    [Abstract] [Full Text] [Related]

  • 16. Spatial variation in 2-methyl-4-chlorophenoxyacetic acid mineralization and sorption in a sandy soil at field level.
    Fredslund L, Vinther FP, Brinch UC, Elsgaard L, Rosenberg P, Jacobsen CS.
    J Environ Qual; 2008 Nov 01; 37(5):1918-28. PubMed ID: 18689753
    [Abstract] [Full Text] [Related]

  • 17. Synthesis and characterization of zirconium titanium phosphate and its application in separation of metal ions.
    Thakkar R, Chudasama U.
    J Hazard Mater; 2009 Dec 15; 172(1):129-37. PubMed ID: 19635644
    [Abstract] [Full Text] [Related]

  • 18. Photocatalytic degradation of the herbicide pendimethalin using nanoparticles of BaTiO3/TiO2 prepared by gel to crystalline conversion method: a kinetic approach.
    Gomathi Devi LN, Krishnamurthy G.
    J Environ Sci Health B; 2008 Sep 15; 43(7):553-61. PubMed ID: 18803109
    [Abstract] [Full Text] [Related]

  • 19. A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: Synthesis, characterization and performance.
    Ma Y, Zheng YM, Chen JP.
    J Colloid Interface Sci; 2011 Feb 15; 354(2):785-92. PubMed ID: 21093869
    [Abstract] [Full Text] [Related]

  • 20. Adsorption and desorption processes of MCPA in Polish mineral soils.
    Paszko T.
    J Environ Sci Health B; 2011 Feb 15; 46(7):569-80. PubMed ID: 21722084
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.