These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 22194299
1. Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Anderson KL, Apolinario EE, Sowers KR. Appl Environ Microbiol; 2012 Mar; 78(5):1473-9. PubMed ID: 22194299 [Abstract] [Full Text] [Related]
2. The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Brioukhanov AL, Netrusov AI, Eggen RIL. Microbiology (Reading); 2006 Jun; 152(Pt 6):1671-1677. PubMed ID: 16735730 [Abstract] [Full Text] [Related]
3. DNA microarray analysis of anaerobic Methanosarcina barkeri reveals responses to heat shock and air exposure. Zhang W, Culley DE, Nie L, Brockman FJ. J Ind Microbiol Biotechnol; 2006 Sep; 33(9):784-90. PubMed ID: 16604357 [Abstract] [Full Text] [Related]
4. Energy Conservation via Hydrogen Cycling in the Methanogenic Archaeon Methanosarcina barkeri. Kulkarni G, Mand TD, Metcalf WW. mBio; 2018 Jul 03; 9(4):. PubMed ID: 29970471 [Abstract] [Full Text] [Related]
5. Enhanced Radiation Resistance of Methanosarcina soligelidi SMA-21, a New Methanogenic Archaeon Isolated from a Siberian Permafrost-Affected Soil in Direct Comparison to Methanosarcina barkeri. Morozova D, Moeller R, Rettberg P, Wagner D. Astrobiology; 2015 Nov 03; 15(11):951-60. PubMed ID: 26544020 [Abstract] [Full Text] [Related]
6. A functional approach to uncover the low-temperature adaptation strategies of the archaeon Methanosarcina barkeri. Gunnigle E, McCay P, Fuszard M, Botting CH, Abram F, O'Flaherty V. Appl Environ Microbiol; 2013 Jul 03; 79(14):4210-9. PubMed ID: 23645201 [Abstract] [Full Text] [Related]
7. [Effect of a corrinoid on Methanosarcina barkeri DNA synthesis]. Ryzhkova EP, Briukhanov AL. Mikrobiologiia; 2009 Jul 03; 78(1):5-11. PubMed ID: 19334592 [Abstract] [Full Text] [Related]
8. Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate. Serrano P, Alawi M, de Vera JP, Wagner D. Astrobiology; 2019 Feb 03; 19(2):197-208. PubMed ID: 30742498 [Abstract] [Full Text] [Related]
9. Survival of methanogens during desiccation: implications for life on Mars. Kendrick MG, Kral TA. Astrobiology; 2006 Aug 03; 6(4):546-51. PubMed ID: 16916281 [Abstract] [Full Text] [Related]
10. Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material. Nguyen V, Karunakaran E, Collins G, Biggs CA. Colloids Surf B Biointerfaces; 2016 Jul 01; 143():518-525. PubMed ID: 27038917 [Abstract] [Full Text] [Related]
11. Methane production by methanogens following an aerobic washing procedure: simplifying methods for manipulation. McAllister SA, Kral TA. Astrobiology; 2006 Dec 01; 6(6):819-23. PubMed ID: 17155882 [Abstract] [Full Text] [Related]
12. Formation of Zerovalent Iron in Iron-Reducing Cultures of Methanosarcina barkeri. Shang H, Daye M, Sivan O, Borlina CS, Tamura N, Weiss BP, Bosak T. Environ Sci Technol; 2020 Jun 16; 54(12):7354-7365. PubMed ID: 32379434 [Abstract] [Full Text] [Related]
13. Co-cultivation of the strictly anaerobic methanogen Methanosarcina barkeri with aerobic methanotrophs in an oxygen-limited membrane bioreactor. In 't Zandt MH, van den Bosch TJM, Rijkers R, van Kessel MAHJ, Jetten MSM, Welte CU. Appl Microbiol Biotechnol; 2018 Jul 16; 102(13):5685-5694. PubMed ID: 29725720 [Abstract] [Full Text] [Related]
14. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri. Rowe AR, Xu S, Gardel E, Bose A, Girguis P, Amend JP, El-Naggar MY. mBio; 2019 Mar 12; 10(2):. PubMed ID: 30862748 [Abstract] [Full Text] [Related]
16. Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid. Buchenau B, Thauer RK. Arch Microbiol; 2004 Oct 12; 182(4):313-25. PubMed ID: 15349715 [Abstract] [Full Text] [Related]
17. Protection of Methanosarcina barkeri against oxidative stress: identification and characterization of an iron superoxide dismutase. Brioukhanov A, Netrusov A, Sordel M, Thauer RK, Shima S. Arch Microbiol; 2000 Sep 12; 174(3):213-6. PubMed ID: 11041352 [Abstract] [Full Text] [Related]
18. Substrate-dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri. Wu W, Meador TB, Könneke M, Elvert M, Wegener G, Hinrichs KU. Environ Microbiol Rep; 2020 Oct 12; 12(5):555-567. PubMed ID: 32783290 [Abstract] [Full Text] [Related]
19. The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR. J Bacteriol; 2006 Nov 12; 188(22):7922-31. PubMed ID: 16980466 [Abstract] [Full Text] [Related]
20. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea. Duszenko N, Buan NR. Appl Environ Microbiol; 2017 Sep 15; 83(18):. PubMed ID: 28710268 [Abstract] [Full Text] [Related] Page: [Next] [New Search]