These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 22198519
21. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG. J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114 [Abstract] [Full Text] [Related]
22. Receptor rigidity and ligand mobility in trypsin-ligand complexes. Guvench O, Price DJ, Brooks CL. Proteins; 2005 Feb 01; 58(2):407-17. PubMed ID: 15578663 [Abstract] [Full Text] [Related]
23. Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors. Surpateanu G, Iorga BI. J Comput Aided Mol Des; 2012 May 01; 26(5):595-601. PubMed ID: 22180049 [Abstract] [Full Text] [Related]
24. SAMPL6 host-guest binding affinities and binding poses from spherical-coordinates-biased simulations. Sun Z, He Q, Li X, Zhu Z. J Comput Aided Mol Des; 2020 May 01; 34(5):589-600. PubMed ID: 31974852 [Abstract] [Full Text] [Related]
25. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. Zhang X, Wong SE, Lightstone FC. J Chem Inf Model; 2014 Jan 27; 54(1):324-37. PubMed ID: 24358939 [Abstract] [Full Text] [Related]
26. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. J Med Chem; 2006 Oct 19; 49(21):6177-96. PubMed ID: 17034125 [Abstract] [Full Text] [Related]
27. Binding affinities in the SAMPL3 trypsin and host-guest blind tests estimated with the MM/PBSA and LIE methods. Mikulskis P, Genheden S, Rydberg P, Sandberg L, Olsen L, Ryde U. J Comput Aided Mol Des; 2012 May 19; 26(5):527-41. PubMed ID: 22198518 [Abstract] [Full Text] [Related]
28. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect. Yan Z, Wang J. Proteins; 2015 Sep 19; 83(9):1632-42. PubMed ID: 26111900 [Abstract] [Full Text] [Related]
29. Comparative binding energy analysis for binding affinity and target selectivity prediction. Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC. Proteins; 2010 Jan 19; 78(1):135-53. PubMed ID: 19768680 [Abstract] [Full Text] [Related]
30. Lead Finder docking and virtual screening evaluation with Astex and DUD test sets. Novikov FN, Stroylov VS, Zeifman AA, Stroganov OV, Kulkov V, Chilov GG. J Comput Aided Mol Des; 2012 Jun 19; 26(6):725-35. PubMed ID: 22569592 [Abstract] [Full Text] [Related]
31. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening. Arcon JP, Defelipe LA, Lopez ED, Burastero O, Modenutti CP, Barril X, Marti MA, Turjanski AG. J Chem Inf Model; 2019 Aug 26; 59(8):3572-3583. PubMed ID: 31373819 [Abstract] [Full Text] [Related]
32. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment. Ashtawy HM, Mahapatra NR. J Chem Inf Model; 2018 Jan 22; 58(1):119-133. PubMed ID: 29190087 [Abstract] [Full Text] [Related]
34. Docking ligands into flexible and solvated macromolecules. 5. Force-field-based prediction of binding affinities of ligands to proteins. Englebienne P, Moitessier N. J Chem Inf Model; 2009 Nov 22; 49(11):2564-71. PubMed ID: 19928836 [Abstract] [Full Text] [Related]
35. Improving binding mode predictions by docking into protein-specifically adapted potential fields. Radestock S, Böhm M, Gohlke H. J Med Chem; 2005 Aug 25; 48(17):5466-79. PubMed ID: 16107145 [Abstract] [Full Text] [Related]
36. Calculation of protein-ligand binding free energy by using a polarizable potential. Jiao D, Golubkov PA, Darden TA, Ren P. Proc Natl Acad Sci U S A; 2008 Apr 29; 105(17):6290-5. PubMed ID: 18427113 [Abstract] [Full Text] [Related]
37. Using free energy of binding calculations to improve the accuracy of virtual screening predictions. Malmstrom RD, Watowich SJ. J Chem Inf Model; 2011 Jul 25; 51(7):1648-55. PubMed ID: 21696204 [Abstract] [Full Text] [Related]
38. The SAMPL5 host-guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method. Yin J, Henriksen NM, Slochower DR, Gilson MK. J Comput Aided Mol Des; 2017 Jan 25; 31(1):133-145. PubMed ID: 27638809 [Abstract] [Full Text] [Related]
39. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Rastelli G, Del Rio A, Degliesposti G, Sgobba M. J Comput Chem; 2010 Mar 25; 31(4):797-810. PubMed ID: 19569205 [Abstract] [Full Text] [Related]
40. Discrete molecular dynamics distinguishes nativelike binding poses from decoys in difficult targets. Proctor EA, Yin S, Tropsha A, Dokholyan NV. Biophys J; 2012 Jan 04; 102(1):144-51. PubMed ID: 22225808 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]