These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


549 related items for PubMed ID: 22200486

  • 1. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes.
    Wisniewska-Kruk J, Hoeben KA, Vogels IM, Gaillard PJ, Van Noorden CJ, Schlingemann RO, Klaassen I.
    Exp Eye Res; 2012 Mar; 96(1):181-90. PubMed ID: 22200486
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. TNFα-Induced Disruption of the Blood-Retinal Barrier In Vitro Is Regulated by Intracellular 3',5'-Cyclic Adenosine Monophosphate Levels.
    van der Wijk AE, Vogels IMC, van Noorden CJF, Klaassen I, Schlingemann RO.
    Invest Ophthalmol Vis Sci; 2017 Jul 01; 58(9):3496-3505. PubMed ID: 28715583
    [Abstract] [Full Text] [Related]

  • 4. Glucocorticoids exert differential effects on the endothelium in an in vitro model of the blood-retinal barrier.
    van der Wijk AE, Canning P, van Heijningen RP, Vogels IMC, van Noorden CJF, Klaassen I, Schlingemann RO.
    Acta Ophthalmol; 2019 Mar 01; 97(2):214-224. PubMed ID: 30168271
    [Abstract] [Full Text] [Related]

  • 5. Plasmalemma Vesicle-Associated Protein Has a Key Role in Blood-Retinal Barrier Loss.
    Wisniewska-Kruk J, van der Wijk AE, van Veen HA, Gorgels TG, Vogels IM, Versteeg D, Van Noorden CJ, Schlingemann RO, Klaassen I.
    Am J Pathol; 2016 Apr 01; 186(4):1044-54. PubMed ID: 26878208
    [Abstract] [Full Text] [Related]

  • 6. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
    Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M.
    Neurochem Int; 2009 Apr 01; 54(3-4):253-63. PubMed ID: 19111869
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group.
    Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW.
    Diabetes; 1998 Dec 01; 47(12):1953-9. PubMed ID: 9836530
    [Abstract] [Full Text] [Related]

  • 9. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.
    Thomsen LB, Burkhart A, Moos T.
    PLoS One; 2015 Dec 01; 10(8):e0134765. PubMed ID: 26241648
    [Abstract] [Full Text] [Related]

  • 10. VEGF but not PlGF disturbs the barrier of retinal endothelial cells.
    Deissler HL, Deissler H, Lang GK, Lang GE.
    Exp Eye Res; 2013 Oct 01; 115():162-71. PubMed ID: 23891860
    [Abstract] [Full Text] [Related]

  • 11. Norrin restores blood-retinal barrier properties after vascular endothelial growth factor-induced permeability.
    Díaz-Coránguez M, Lin CM, Liebner S, Antonetti DA.
    J Biol Chem; 2020 Apr 03; 295(14):4647-4660. PubMed ID: 32086377
    [Abstract] [Full Text] [Related]

  • 12. Organization of Endothelial Cells, Pericytes, and Astrocytes into a 3D Microfluidic in Vitro Model of the Blood-Brain Barrier.
    Wang JD, Khafagy el-S, Khanafer K, Takayama S, ElSayed ME.
    Mol Pharm; 2016 Mar 07; 13(3):895-906. PubMed ID: 26751280
    [Abstract] [Full Text] [Related]

  • 13. Microglia increase tight-junction permeability in coordination with Müller cells under hypoxic condition in an in vitro model of inner blood-retinal barrier.
    Inada M, Xu H, Takeuchi M, Ito M, Chen M.
    Exp Eye Res; 2021 Apr 07; 205():108490. PubMed ID: 33607076
    [Abstract] [Full Text] [Related]

  • 14. Involvement of MAPKs in endostatin-mediated regulation of blood-retinal barrier function.
    Campbell M, Collery R, McEvoy A, Gardiner TA, Stitt AW, Brankin B.
    Curr Eye Res; 2006 Dec 07; 31(12):1033-45. PubMed ID: 17169842
    [Abstract] [Full Text] [Related]

  • 15. Pulsatile flow increases the expression of eNOS, ET-1, and prostacyclin in a novel in vitro coculture model of the retinal vasculature.
    Walshe TE, Ferguson G, Connell P, O'Brien C, Cahill PA.
    Invest Ophthalmol Vis Sci; 2005 Jan 07; 46(1):375-82. PubMed ID: 15623798
    [Abstract] [Full Text] [Related]

  • 16. Capacity of aflibercept to counteract VEGF-stimulated abnormal behavior of retinal microvascular endothelial cells.
    Deissler HL, Lang GK, Lang GE.
    Exp Eye Res; 2014 May 07; 122():20-31. PubMed ID: 24631334
    [Abstract] [Full Text] [Related]

  • 17. Endostatin modulates VEGF-mediated barrier dysfunction in the retinal microvascular endothelium.
    Brankin B, Campbell M, Canning P, Gardiner TA, Stitt AW.
    Exp Eye Res; 2005 Jul 07; 81(1):22-31. PubMed ID: 15978251
    [Abstract] [Full Text] [Related]

  • 18. Partial characterization of the human retinal endothelial cell tight and adherens junction complexes.
    Russ PK, Davidson MK, Hoffman LH, Haselton FR.
    Invest Ophthalmol Vis Sci; 1998 Nov 07; 39(12):2479-85. PubMed ID: 9804158
    [Abstract] [Full Text] [Related]

  • 19. Effects of pericytes and various cytokines on integrity of endothelial monolayer originated from blood-nerve barrier: an in vitro study.
    Iwasaki T, Kanda T, Mizusawa H.
    J Med Dent Sci; 1999 Mar 07; 46(1):31-40. PubMed ID: 12160211
    [Abstract] [Full Text] [Related]

  • 20. Size-selective and in vitro assessment of inner blood retina barrier permeability.
    Campbell M, Humphries P.
    Methods Mol Biol; 2011 Mar 07; 763():355-67. PubMed ID: 21874464
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.