These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 22200647
21. Extraction and Conversion Studies of the Antiaddictive Alkaloids Coronaridine, Ibogamine, Voacangine, and Ibogaine from Two Mexican Tabernaemontana Species (Apocynaceae). Krengel F, Mijangos MV, Reyes-Lezama M, Reyes-Chilpa R. Chem Biodivers; 2019 Jul; 16(7):e1900175. PubMed ID: 31095891 [Abstract] [Full Text] [Related]
22. Acetylcholinesterase inhibition in cognition-relevant brain areas of mice treated with a nootropic Amazonian herbal (Marapuama). Figueiró M, Ilha J, Pochmann D, Porciúncula LO, Xavier LL, Achaval M, Nunes DS, Elisabetsky E. Phytomedicine; 2010 Oct; 17(12):956-62. PubMed ID: 20833520 [Abstract] [Full Text] [Related]
23. Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. Farrow SC, Kamileen MO, Meades J, Ameyaw B, Xiao Y, O'Connor SE. J Biol Chem; 2018 Sep 07; 293(36):13821-13833. PubMed ID: 30030374 [Abstract] [Full Text] [Related]
24. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. Nair JJ, Aremu AO, van Staden J. J Ethnopharmacol; 2011 Oct 11; 137(3):1102-6. PubMed ID: 21787856 [Abstract] [Full Text] [Related]
25. Cytotoxicity and acetylcholinesterase inhibitory activity of an isolated crinine alkaloid from Boophane disticha (Amaryllidaceae). Adewusi EA, Fouche G, Steenkamp V. J Ethnopharmacol; 2012 Sep 28; 143(2):572-8. PubMed ID: 22835813 [Abstract] [Full Text] [Related]
27. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Wszelaki N, Kuciun A, Kiss AK. Acta Pharm; 2010 Mar 28; 60(1):119-28. PubMed ID: 20228046 [Abstract] [Full Text] [Related]
28. The impact of acetylcholinesterase inhibitors on the extracellular acetylcholine concentrations in the adult rat brain: a meta-analysis. Noori HR, Fliegel S, Brand I, Spanagel R. Synapse; 2012 Oct 28; 66(10):893-901. PubMed ID: 22733599 [Abstract] [Full Text] [Related]
29. Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors. Herkert NM, Eckert S, Eyer P, Bumm R, Weber G, Thiermann H, Worek F. Toxicology; 2008 Apr 18; 246(2-3):188-92. PubMed ID: 18304715 [Abstract] [Full Text] [Related]
30. Reversible acetylcholinesterase inhibitory effect of Tabernaemontana divaricata extract on synaptic transmission in rat CA1 hippocampus. Pratchayasakul W, Pongchaidecha A, Chattipakorn N, Chattipakorn SC. Indian J Med Res; 2010 Mar 18; 131():411-7. PubMed ID: 20418555 [Abstract] [Full Text] [Related]
31. In vitro acetylcholinesterase activity of peptide derivatives isolated from two species of Leguminosae. Alves CQ, Lima LS, David JM, Lima MV, David JP, Lima FW, Pedroza KC, Queiroz LP. Pharm Biol; 2013 Jul 18; 51(7):936-9. PubMed ID: 23570522 [Abstract] [Full Text] [Related]
32. The paradox of iboga: intoxication by a natural detoxification remedy. Matamoros-Castillo JM, Jávega-Manjón C, Sierra-San Miguel P, Pino-Pino A, Livianos-Aldana L. Actas Esp Psiquiatr; 2019 Mar 18; 47(2):70-8. PubMed ID: 31017277 [No Abstract] [Full Text] [Related]
33. Metabolite Profiling of Anti-Addictive Alkaloids from Four Mexican Tabernaemontana Species and the Entheogenic African Shrub Tabernanthe iboga (Apocynaceae). Krengel F, Chevalier Q, Dickinson J, Herrera Santoyo J, Reyes Chilpa R. Chem Biodivers; 2019 Apr 18; 16(4):e1800506. PubMed ID: 30618175 [Abstract] [Full Text] [Related]
34. Distribution of ibogaine and noribogaine in a man following a poisoning involving root bark of the Tabernanthe iboga shrub. Kontrimaviciūte V, Mathieu O, Mathieu-Daudé JC, Vainauskas P, Casper T, Baccino E, Bressolle FM. J Anal Toxicol; 2006 Sep 18; 30(7):434-40. PubMed ID: 16959135 [Abstract] [Full Text] [Related]
35. The effects of Tabernaemontana divaricata root extract on amyloid beta-peptide 25-35 peptides induced cognitive deficits in mice. Nakdook W, Khongsombat O, Taepavarapruk P, Taepavarapruk N, Ingkaninan K. J Ethnopharmacol; 2010 Jul 06; 130(1):122-6. PubMed ID: 20435125 [Abstract] [Full Text] [Related]
36. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. Vinutha B, Prashanth D, Salma K, Sreeja SL, Pratiti D, Padmaja R, Radhika S, Amit A, Venkateshwarlu K, Deepak M. J Ethnopharmacol; 2007 Jan 19; 109(2):359-63. PubMed ID: 16950584 [Abstract] [Full Text] [Related]
37. Two fast screening methods (GC-MS and TLC-ChEI assay) for rapid evaluation of potential anticholinesterasic indole alkaloids in complex mixtures. Vieira IJ, Medeiros WL, Monnerat CS, Souza JJ, Mathias L, Braz-Filho R, Pinto AC, Sousa PM, Rezende CM, Epifanio Rde A. An Acad Bras Cienc; 2008 Sep 19; 80(3):419-26. PubMed ID: 18797794 [Abstract] [Full Text] [Related]
38. Triclisia sacleuxii (Pierre) Diels (Menispermaceae), a potential source of acetylcholinesterase inhibitors. Murebwayire S, Ingkaninan K, Changwijit K, Frédérich M, Duez P. J Pharm Pharmacol; 2009 Jan 19; 61(1):103-7. PubMed ID: 19126303 [Abstract] [Full Text] [Related]
39. An aporphine alkaloid from Nelumbo nucifera as an acetylcholinesterase inhibitor and the primary investigation for structure-activity correlations. Yang ZD, Zhang X, Du J, Ma ZJ, Guo F, Li S, Yao XJ. Nat Prod Res; 2012 Jan 19; 26(5):387-92. PubMed ID: 21732870 [Abstract] [Full Text] [Related]
40. Potency determinations of acetylcholinesterase inhibitors using Ellman's reaction-based assay in screening: Effect of assay variants. Järvinen P, Vuorela P, Hatakka A, Fallarero A. Anal Biochem; 2011 Jan 01; 408(1):166-8. PubMed ID: 20851093 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]