These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 2220327

  • 1. Effect of culture medium on acid production from sorbitol by oral bacteria.
    Kalfas S, Edwardsson S.
    Acta Odontol Scand; 1990 Aug; 48(4):217-22. PubMed ID: 2220327
    [Abstract] [Full Text] [Related]

  • 2. Sorbitol-fermenting predominant cultivable flora of human dental plaque in relation to sorbitol adaptation and salivary secretion rate.
    Kalfas S, Edwardsson S.
    Oral Microbiol Immunol; 1990 Feb; 5(1):33-8. PubMed ID: 2087343
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The role of the succinate pathway in sorbitol fermentation by oral Actinomyces viscosus and Actinomyces naeslundii.
    Takahashi N, Kalfas S, Yamada T.
    Oral Microbiol Immunol; 1994 Aug; 9(4):218-23. PubMed ID: 7478761
    [Abstract] [Full Text] [Related]

  • 8. Growth of oral Streptococcus species and Actinomyces viscosus in human saliva.
    de Jong MH, van der Hoeven JS, van OS JH, Olijve JH.
    Appl Environ Microbiol; 1984 May; 47(5):901-4. PubMed ID: 6742834
    [Abstract] [Full Text] [Related]

  • 9. Fermentation of five sucrose isomers by human dental plaque bacteria.
    Matsuyama J, Sato T, Hoshino E, Noda T, Takahashi N.
    Caries Res; 2003 May; 37(6):410-5. PubMed ID: 14571118
    [Abstract] [Full Text] [Related]

  • 10. Sorbitol adaptation of dental plaque in people with low and normal salivary-secretion rates.
    Kalfas S, Svensäter G, Birkhed D, Edwardsson S.
    J Dent Res; 1990 Feb; 69(2):442-6. PubMed ID: 2307746
    [Abstract] [Full Text] [Related]

  • 11. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.
    Norimatsu Y, Kawashima J, Takano-Yamamoto T, Takahashi N.
    Microbiol Immunol; 2015 Sep; 59(9):501-6. PubMed ID: 26177683
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Microbiological aspects of some caloric sugar substitutes.
    Birkhed D, Kalfas S, Svensäter G, Edwardsson S.
    Int Dent J; 1985 Mar; 35(1):9-17. PubMed ID: 3858233
    [Abstract] [Full Text] [Related]

  • 18. [Reciprocal in vitro actions of Streptococcus mutans, Actinomyces and Veillonella: a simplified model for carbohydrate metabolism in plaque].
    Distler W, Ott K, Kröncke A.
    Dtsch Zahnarztl Z; 1980 May; 35(5):548-53. PubMed ID: 6935027
    [Abstract] [Full Text] [Related]

  • 19. Fluoride-sensitivity of growth and acid production of oral Actinomyces: comparison with oral Streptococcus.
    Kawashima J, Nakajo K, Washio J, Mayanagi G, Shimauchi H, Takahashi N.
    Microbiol Immunol; 2013 Dec; 57(12):797-804. PubMed ID: 24102761
    [Abstract] [Full Text] [Related]

  • 20. The influence of sucralose on bacterial metabolism.
    Young DA, Bowen WH.
    J Dent Res; 1990 Aug; 69(8):1480-4. PubMed ID: 2143512
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.