These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 22208

  • 41. The fermentation of L-sorbose by Gluconobacter melanogenus. II. Inducible formation of enzyme catalyzing conversion of L-sorbose to 2-keto-L-gulonic acid.
    Tsukada Y, Perlman D.
    Biotechnol Bioeng; 1972 Sep; 14(5):811-8. PubMed ID: 5071667
    [No Abstract] [Full Text] [Related]

  • 42. [On the significance of the concentration of substances in contrast media in the oxidation of sorbitol by acetic bacteria].
    RAZUMOVSKAIA ZG.
    Tr Latv Padomju Soc Repub Zinat Akad Mikrobiol Inst; 1959 Sep; 6():46-51. PubMed ID: 14436690
    [No Abstract] [Full Text] [Related]

  • 43. Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor.
    Ozturk SS, Palsson BO.
    Biotechnol Prog; 1991 Sep; 7(6):481-94. PubMed ID: 1367750
    [Abstract] [Full Text] [Related]

  • 44. Candida albicans SOU1 encodes a sorbose reductase required for L-sorbose utilization.
    Greenberg JR, Price NP, Oliver RP, Sherman F, Rustchenko E.
    Yeast; 2005 Sep; 22(12):957-69. PubMed ID: 16134116
    [Abstract] [Full Text] [Related]

  • 45. Off-line FIA monitoring of D-sorbitol consumption during L-sorbose production using a sorbitol biosensor.
    Sefcovicová J, Vikartovská A, Pätoprstý V, Magdolen P, Katrlík J, Tkac J, Gemeiner P.
    Anal Chim Acta; 2009 Jun 30; 644(1-2):68-71. PubMed ID: 19463564
    [Abstract] [Full Text] [Related]

  • 46. Sorbitol dehydrogenases in Acetobacter suboxydans.
    CUMMINS JT, CHELDELIN VH, KING TE.
    J Biol Chem; 1957 May 30; 226(1):301-6. PubMed ID: 13428763
    [No Abstract] [Full Text] [Related]

  • 47. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production.
    Kylmä AK, Granström T, Leisola M.
    Appl Microbiol Biotechnol; 2004 Feb 30; 63(5):584-91. PubMed ID: 12898066
    [Abstract] [Full Text] [Related]

  • 48. Fermentation processes employed in vitamin C synthesis.
    Kulhánek M.
    Adv Appl Microbiol; 1970 Feb 30; 12():11-33. PubMed ID: 4920194
    [No Abstract] [Full Text] [Related]

  • 49. Factors affecting the yield and properties of bacterial cellulose.
    Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S.
    J Ind Microbiol Biotechnol; 2002 Oct 30; 29(4):189-95. PubMed ID: 12355318
    [Abstract] [Full Text] [Related]

  • 50. [Efficiency of glucose utilization by Gluconobacter oxydans].
    Uspenskaia SN, Loĭtsianskaia MS.
    Mikrobiologiia; 1979 Oct 30; 48(3):400-5. PubMed ID: 470626
    [Abstract] [Full Text] [Related]

  • 51. Attenuated total reflectance Fourier transform mid-infrared spectroscopic quantification of sorbitol and sorbose during a Gluconobacter biotransformation process.
    Macauley-Patrick S, Arnold SA, McCarthy B, Harvey LM, McNeil B.
    Biotechnol Lett; 2003 Feb 30; 25(3):257-60. PubMed ID: 12882581
    [Abstract] [Full Text] [Related]

  • 52. Biosynthesis of alpha-isopropylmalic and citric acids in Acetobacter suboxydans.
    Maragoudakis ME, Strassman M.
    J Bacteriol; 1967 Sep 30; 94(3):512-6. PubMed ID: 6035258
    [Abstract] [Full Text] [Related]

  • 53. Proceedings: L-Sorbose metabolism in Agrobacterium: a biochemical explanation for an intrageneric phenotypic difference.
    van Keer C, Kersters K, De Ley J.
    Arch Int Physiol Biochim; 1976 Feb 30; 84(1):200-1. PubMed ID: 60964
    [No Abstract] [Full Text] [Related]

  • 54. The electron transport system of Acetobacter suboxydans with particular reference to cytochrome.
    Daniel RM.
    Biochim Biophys Acta; 1970 Sep 01; 216(2):328-41. PubMed ID: 5504630
    [No Abstract] [Full Text] [Related]

  • 55. [Use of NMR spectroscopy in studies of sorbitol and glucose transformation by Gluconobacter oxydans].
    Kitova aE, Reshetilov AN, Kutyshenko VP, Kutyshenko AV.
    Biofizika; 2006 Sep 01; 51(2):306-9. PubMed ID: 16637338
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. [The influence of non-metabolizable alpha- and beta-glycosides on the regulation of sorbose fermentation of salmonellae (author's transl)].
    Stenzel W.
    Zentralbl Bakteriol Orig A; 1978 Jun 01; 240(4):489-96. PubMed ID: 696059
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. [Effect of glucose on the process of oxidation of sorbose by Acetobacter aceti].
    RAZUMOVSKAIA ZG, VASIL'EVA OA.
    Mikrobiologiia; 1950 Jun 01; 19(2):121-6. PubMed ID: 15412606
    [No Abstract] [Full Text] [Related]

  • 60. The conversion of mannitol to fructose by Acetobacter suboxydans.
    DENISON FW, FRIEDLAND WC, PETERSON MH, SYLVESTER JC.
    Appl Microbiol; 1956 Nov 01; 4(6):316-22. PubMed ID: 13395359
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.