These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 22209063

  • 1. A canonical biomechanical vocal fold model.
    Bhattacharya P, Siegmund TH.
    J Voice; 2012 Sep; 26(5):535-47. PubMed ID: 22209063
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL, Achuthan A, Erath BD.
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z.
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [Abstract] [Full Text] [Related]

  • 7. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.
    Zhang Z.
    J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA, Devine EE, Jiang JJ, Vamos AC, Tao C.
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [Abstract] [Full Text] [Related]

  • 10. A computational study of systemic hydration in vocal fold collision.
    Bhattacharya P, Siegmund T.
    Comput Methods Biomech Biomed Engin; 2014 May; 17(16):1835-52. PubMed ID: 23531170
    [Abstract] [Full Text] [Related]

  • 11. The Potential Role of Subglottal Convergence Angle and Measurement.
    Xu X, Wang J, Devine EE, Wang Y, Zhong H, Courtright MR, Zhou L, Zhuang P, Jiang JJ.
    J Voice; 2017 Jan; 31(1):116.e1-116.e5. PubMed ID: 27133615
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Vocal instabilities in a three-dimensional body-cover phonation model.
    Zhang Z.
    J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612
    [Abstract] [Full Text] [Related]

  • 14. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P, Kelleher JE, Siegmund T.
    J Biomech; 2015 Sep 18; 48(12):3356-63. PubMed ID: 26159059
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models.
    Pickup BA, Thomson SL.
    J Acoust Soc Am; 2010 Sep 18; 128(3):EL124-9. PubMed ID: 20815428
    [Abstract] [Full Text] [Related]

  • 18. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model.
    Yang A, Stingl M, Berry DA, Lohscheller J, Voigt D, Eysholdt U, Dollinger M.
    J Acoust Soc Am; 2011 Aug 18; 130(2):948-64. PubMed ID: 21877808
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.