These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 22209938

  • 1. Interactions between Clostridium perfringens spores and Raw 264.7 macrophages.
    Paredes-Sabja D, Sarker MR.
    Anaerobe; 2012 Feb; 18(1):148-56. PubMed ID: 22209938
    [Abstract] [Full Text] [Related]

  • 2. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells.
    Paredes-Sabja D, Sarker MR.
    Anaerobe; 2011 Apr; 17(2):78-84. PubMed ID: 21315167
    [Abstract] [Full Text] [Related]

  • 3. Inactivation strategy for Clostridium perfringens spores adhered to food contact surfaces.
    Udompijitkul P, Alnoman M, Paredes-Sabja D, Sarker MR.
    Food Microbiol; 2013 Jun; 34(2):328-36. PubMed ID: 23541199
    [Abstract] [Full Text] [Related]

  • 4. Strategy to inactivate Clostridium perfringens spores in meat products.
    Akhtar S, Paredes-Sabja D, Torres JA, Sarker MR.
    Food Microbiol; 2009 May; 26(3):272-7. PubMed ID: 19269568
    [Abstract] [Full Text] [Related]

  • 5. Inhibitory effects of nisin against Clostridium perfringens food poisoning and nonfood-borne isolates.
    Udompijitkul P, Paredes-Sabja D, Sarker MR.
    J Food Sci; 2012 Jan; 77(1):M51-6. PubMed ID: 22132724
    [Abstract] [Full Text] [Related]

  • 6. Roles of DacB and spm proteins in clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation.
    Paredes-Sabja D, Sarker N, Setlow B, Setlow P, Sarker MR.
    Appl Environ Microbiol; 2008 Jun; 74(12):3730-8. PubMed ID: 18441110
    [Abstract] [Full Text] [Related]

  • 7. Production of small, acid-soluble spore proteins in Clostridium perfringens nonfoodborne gastrointestinal disease isolates.
    Raju D, Sarker MR.
    Can J Microbiol; 2007 Apr; 53(4):514-8. PubMed ID: 17612607
    [Abstract] [Full Text] [Related]

  • 8. Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly.
    Liu H, Ray WK, Helm RF, Popham DL, Melville SB.
    J Bacteriol; 2016 Jun 15; 198(12):1773-1782. PubMed ID: 27068591
    [Abstract] [Full Text] [Related]

  • 9. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
    Udompijitkul P, Alnoman M, Banawas S, Paredes-Sabja D, Sarker MR.
    Food Microbiol; 2014 Dec 15; 44():24-33. PubMed ID: 25084641
    [Abstract] [Full Text] [Related]

  • 10. Effect of the cortex-lytic enzyme SleC from non-food-borne Clostridium perfringens on the germination properties of SleC-lacking spores of a food poisoning isolate.
    Paredes-Sabja D, Sarker MR.
    Can J Microbiol; 2010 Nov 15; 56(11):952-8. PubMed ID: 21076486
    [Abstract] [Full Text] [Related]

  • 11. Host serum factor triggers germination of Clostridium perfringens spores lacking the cortex hydrolysis machinery.
    Paredes-Sabja D, Sarker MR.
    J Med Microbiol; 2011 Dec 15; 60(Pt 12):1734-1741. PubMed ID: 21799201
    [Abstract] [Full Text] [Related]

  • 12. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores.
    Banawas S, Korza G, Paredes-Sabja D, Li Y, Hao B, Setlow P, Sarker MR.
    Food Microbiol; 2015 Sep 15; 50():83-7. PubMed ID: 25998819
    [Abstract] [Full Text] [Related]

  • 13. The anaerobic pathogen Clostridium perfringens can escape the phagosome of macrophages under aerobic conditions.
    O'Brien DK, Melville SB.
    Cell Microbiol; 2000 Dec 15; 2(6):505-19. PubMed ID: 11207604
    [Abstract] [Full Text] [Related]

  • 14. Investigating the role of small, acid-soluble spore proteins (SASPs) in the resistance of Clostridium perfringens spores to heat.
    Raju D, Waters M, Setlow P, Sarker MR.
    BMC Microbiol; 2006 Jun 08; 6():50. PubMed ID: 16759397
    [Abstract] [Full Text] [Related]

  • 15. Clostridium difficile spore-macrophage interactions: spore survival.
    Paredes-Sabja D, Cofre-Araneda G, Brito-Silva C, Pizarro-Guajardo M, Sarker MR.
    PLoS One; 2012 Jun 08; 7(8):e43635. PubMed ID: 22952726
    [Abstract] [Full Text] [Related]

  • 16. The SpmA/B and DacF proteins of Clostridium perfringens play important roles in spore heat resistance.
    Orsburn B, Sucre K, Popham DL, Melville SB.
    FEMS Microbiol Lett; 2009 Feb 08; 291(2):188-94. PubMed ID: 19189487
    [Abstract] [Full Text] [Related]

  • 17. Characterization of germinants and their receptors for spores of non-food-borne Clostridium perfringens strain F4969.
    Banawas S, Paredes-Sabja D, Setlow P, Sarker MR.
    Microbiology (Reading); 2016 Nov 08; 162(11):1972-1983. PubMed ID: 27692042
    [Abstract] [Full Text] [Related]

  • 18. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth.
    Akhtar S, Paredes-Sabja D, Sarker MR.
    Food Microbiol; 2008 Sep 08; 25(6):802-8. PubMed ID: 18620972
    [Abstract] [Full Text] [Related]

  • 19. Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues.
    O'Brien DK, Melville SB.
    Infect Immun; 2004 Sep 08; 72(9):5204-15. PubMed ID: 15322015
    [Abstract] [Full Text] [Related]

  • 20. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.
    Li J, Freedman JC, Evans DR, McClane BA.
    Infect Immun; 2017 Mar 08; 85(3):. PubMed ID: 28052992
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.