These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 22212907
1. Natural variation for Fe-efficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Kabir AH, Paltridge NG, Able AJ, Paull JG, Stangoulis JC. Planta; 2012 Jun; 235(6):1409-19. PubMed ID: 22212907 [Abstract] [Full Text] [Related]
2. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Kabir AH, Paltridge NG, Roessner U, Stangoulis JC. Physiol Plant; 2013 Mar; 147(3):381-95. PubMed ID: 22913816 [Abstract] [Full Text] [Related]
4. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Cohen CK, Garvin DF, Kochian LV. Planta; 2004 Mar; 218(5):784-92. PubMed ID: 14648120 [Abstract] [Full Text] [Related]
5. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars. Meisrimler CN, Wienkoop S, Lyon D, Geilfus CM, Lüthje S. J Proteomics; 2016 May 17; 140():13-23. PubMed ID: 27012544 [Abstract] [Full Text] [Related]
6. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. García MJ, Romera FJ, Stacey MG, Stacey G, Villar E, Alcántara E, Pérez-Vicente R. Planta; 2013 Jan 17; 237(1):65-75. PubMed ID: 22983673 [Abstract] [Full Text] [Related]
8. Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis. Wu T, Zhang HT, Wang Y, Jia WS, Xu XF, Zhang XZ, Han ZH. J Exp Bot; 2012 Jan 17; 63(2):859-70. PubMed ID: 22058407 [Abstract] [Full Text] [Related]
9. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. O'Rourke JA, Charlson DV, Gonzalez DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC. BMC Genomics; 2007 Dec 21; 8():476. PubMed ID: 18154662 [Abstract] [Full Text] [Related]
10. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis. Hsieh EJ, Waters BM. J Exp Bot; 2016 Oct 21; 67(19):5671-5685. PubMed ID: 27605716 [Abstract] [Full Text] [Related]
11. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ. Plant Physiol; 2009 May 21; 150(1):272-80. PubMed ID: 19329565 [Abstract] [Full Text] [Related]
12. Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency. Andaluz S, Rodríguez-Celma J, Abadía A, Abadía J, López-Millán AF. Plant Physiol Biochem; 2009 May 21; 47(11-12):1082-8. PubMed ID: 19716309 [Abstract] [Full Text] [Related]
13. Flooding impairs Fe uptake and distribution in Citrus due to the strong down-regulation of genes involved in Strategy I responses to Fe deficiency in roots. Martínez-Cuenca MR, Quiñones A, Primo-Millo E, Forner-Giner MÁ. PLoS One; 2015 May 21; 10(4):e0123644. PubMed ID: 25897804 [Abstract] [Full Text] [Related]
14. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Molassiotis A, Tanou G, Diamantidis G, Patakas A, Therios I. J Plant Physiol; 2006 Feb 21; 163(2):176-85. PubMed ID: 16399008 [Abstract] [Full Text] [Related]
15. Biochemical responses to iron deficiency in kiwifruit (Actinidia deliciosa). Rombolà AD, Brüggemann W, López-Millán AF, Tagliavini M, Abadía J, Marangoni B, Moog PR. Tree Physiol; 2002 Aug 21; 22(12):869-75. PubMed ID: 12184976 [Abstract] [Full Text] [Related]
16. Medicago truncatula ecotypes A17 and R108 differed in their response to iron deficiency. Li G, Wang B, Tian Q, Wang T, Zhang WH. J Plant Physiol; 2014 May 01; 171(8):639-47. PubMed ID: 24709157 [Abstract] [Full Text] [Related]
17. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Vasconcelos M, Eckert H, Arahana V, Graef G, Grusak MA, Clemente T. Planta; 2006 Oct 01; 224(5):1116-28. PubMed ID: 16741749 [Abstract] [Full Text] [Related]
18. Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions. Gonzalo MJ, Moreno MÁ, Gogorcena Y. J Plant Physiol; 2011 Jun 15; 168(9):887-93. PubMed ID: 21306783 [Abstract] [Full Text] [Related]
19. The ethylene response factor AtERF4 negatively regulates the iron deficiency response in Arabidopsis thaliana. Liu W, Karemera NJU, Wu T, Yang Y, Zhang X, Xu X, Wang Y, Han Z. PLoS One; 2017 Jun 15; 12(10):e0186580. PubMed ID: 29045490 [Abstract] [Full Text] [Related]
20. Two MATE proteins play a role in iron efficiency in soybean. Rogers EE, Wu X, Stacey G, Nguyen HT. J Plant Physiol; 2009 Sep 01; 166(13):1453-9. PubMed ID: 19342121 [Abstract] [Full Text] [Related] Page: [Next] [New Search]