These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


270 related items for PubMed ID: 22214560

  • 1. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix.
    Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q.
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):897-905. PubMed ID: 22214560
    [Abstract] [Full Text] [Related]

  • 2. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone-co-δ-valerolactone)-poly(d-lactide) triblock copolymers.
    Jing Z, Li J, Xiao W, Xu H, Hong P, Li Y.
    RSC Adv; 2019 Aug 19; 9(45):26067-26079. PubMed ID: 35531016
    [Abstract] [Full Text] [Related]

  • 3. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J, Boss A, Chronakis IS.
    Biomacromolecules; 2004 Aug 19; 5(3):1124-34. PubMed ID: 15132708
    [Abstract] [Full Text] [Related]

  • 4. Toward Super-Tough Poly(l-lactide) via Constructing Pseudo-Cross-link Network in Toughening Phase Anchored by Stereocomplex Crystallites at the Interface.
    Yang DD, Liu W, Zhu HM, Wu G, Chen SC, Wang XL, Wang YZ.
    ACS Appl Mater Interfaces; 2018 Aug 08; 10(31):26594-26603. PubMed ID: 30019579
    [Abstract] [Full Text] [Related]

  • 5. Toughening of Poly(L-lactide) with Blends of Poly(ε-caprolactone-co-L-lactide) in the Presence of Chain Extender.
    Srisuwan Y, Baimark Y, Suttiruengwong S.
    Int J Biomater; 2018 Aug 08; 2018():1294397. PubMed ID: 30275834
    [Abstract] [Full Text] [Related]

  • 6. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness.
    Luo Y, Ju Y, Bai H, Liu Z, Zhang Q, Fu Q.
    J Phys Chem B; 2017 Jun 29; 121(25):6271-6279. PubMed ID: 28587466
    [Abstract] [Full Text] [Related]

  • 7. Formation of shish-kebabs in injection-molded poly(L-lactic acid) by application of an intense flow field.
    Xu H, Zhong GJ, Fu Q, Lei J, Jiang W, Hsiao BS, Li ZM.
    ACS Appl Mater Interfaces; 2012 Dec 29; 4(12):6774-84. PubMed ID: 23153180
    [Abstract] [Full Text] [Related]

  • 8. Melting and crystallization behaviors of biodegradable polymers enzymatically coalesced from their cyclodextrin inclusion complexes.
    Wei M, Shuai X, Tonelli AE.
    Biomacromolecules; 2003 Dec 29; 4(3):783-92. PubMed ID: 12741799
    [Abstract] [Full Text] [Related]

  • 9. Enhanced crystallization rate of poly(L-lactic acid) (PLLA) by polyoxymethylene (POM) fragment crystals in the PLLA/POM blends with a small amount of POM.
    Qiu J, Guan J, Wang H, Zhu S, Cao X, Ye QL, Li Y.
    J Phys Chem B; 2014 Jun 26; 118(25):7167-76. PubMed ID: 24886108
    [Abstract] [Full Text] [Related]

  • 10. Enhancement in Crystallizability of Poly(L-Lactide) Using Stereocomplex-Polylactide Powder as a Nucleating Agent.
    Baimark Y, Srihanam P, Srisuwan Y, Phromsopha T.
    Polymers (Basel); 2022 Sep 29; 14(19):. PubMed ID: 36236039
    [Abstract] [Full Text] [Related]

  • 11. Preparation and properties of poly(L-lactic acid) blends with excellent low-temperature toughness by blending acrylic ester based impact resistance agent.
    Jia S, Chen Y, Bian J, Pan H, Wang X, Zhao L, Han L, Zhang H, Dong L, Zhang H.
    Int J Biol Macromol; 2021 Jul 31; 183():1871-1880. PubMed ID: 34087292
    [Abstract] [Full Text] [Related]

  • 12. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide).
    Qin Y, Liu S, Zhang Y, Yuan M, Li H, Yuan M.
    Int J Biol Macromol; 2014 Sep 31; 70():327-33. PubMed ID: 25020084
    [Abstract] [Full Text] [Related]

  • 13. Construction of fully biodegradable poly(L-lactic acid)/poly(D-lactic acid)-poly(lactide-co-caprolactone) block polymer films: Viscoelasticity, processability and flexibility.
    He W, Ye L, Coates P, Caton-Rose F, Zhao X.
    Int J Biol Macromol; 2023 May 01; 236():123980. PubMed ID: 36898455
    [Abstract] [Full Text] [Related]

  • 14. Crystallization and Alkaline Degradation Behaviors of Poly(l-Lactide)/4-Armed Poly(ε-Caprolactone)-Block-Poly(d-Lactide) Blends with Different Poly(d-Lactide) Block Lengths.
    Dai S, Wang M, Zhuang Z, Ning Z.
    Polymers (Basel); 2020 Sep 25; 12(10):. PubMed ID: 32992889
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.
    Zhao H, Zhao G.
    J Mech Behav Biomed Mater; 2016 Jan 25; 53():59-67. PubMed ID: 26313249
    [Abstract] [Full Text] [Related]

  • 18. Investigation of PLLA/PCL blends and paclitaxel release profiles.
    Can E, Udenir G, Kanneci AI, Kose G, Bucak S.
    AAPS PharmSciTech; 2011 Dec 25; 12(4):1442-53. PubMed ID: 22038476
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(L-lactide).
    Tsuji H, Ishizaka T.
    Int J Biol Macromol; 2001 Aug 20; 29(2):83-9. PubMed ID: 11518579
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.