These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
367 related items for PubMed ID: 22217882
1. The contribution of d-tubocurarine-sensitive and apamin-sensitive K-channels to EDHF-mediated relaxation of mesenteric arteries from eNOS-/- mice. Chen X, Li Y, Hollenberg M, Triggle CR, Ding H. J Cardiovasc Pharmacol; 2012 May; 59(5):413-25. PubMed ID: 22217882 [Abstract] [Full Text] [Related]
8. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED. Br J Pharmacol; 1998 Jul 03; 124(5):992-1000. PubMed ID: 9692786 [Abstract] [Full Text] [Related]
9. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat. Stankevicius E, Dalsgaard T, Kroigaard C, Beck L, Boedtkjer E, Misfeldt MW, Nielsen G, Schjorring O, Hughes A, Simonsen U. J Pharmacol Exp Ther; 2011 Dec 03; 339(3):842-50. PubMed ID: 21880870 [Abstract] [Full Text] [Related]
10. Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries. Pourageaud F, Bappel-Gozalbes C, Marthan R, Freslon JL. Br J Pharmacol; 2000 Nov 03; 131(6):1211-9. PubMed ID: 11082130 [Abstract] [Full Text] [Related]
11. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles. McGuire JJ, Hollenberg MD, Andrade-Gordon P, Triggle CR. Br J Pharmacol; 2002 Jan 03; 135(1):155-69. PubMed ID: 11786491 [Abstract] [Full Text] [Related]
12. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries. Petersson J, Zygmunt PM, Högestätt ED. Br J Pharmacol; 1997 Apr 03; 120(7):1344-50. PubMed ID: 9105711 [Abstract] [Full Text] [Related]
15. Differential mechanisms for insulin-induced relaxations in mouse posterior tibial arteries and main mesenteric arteries. Qu D, Liu J, Lau CW, Huang Y. Vascul Pharmacol; 2014 Dec 15; 63(3):173-7. PubMed ID: 25446161 [Abstract] [Full Text] [Related]
16. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Zygmunt PM, Högestätt ED. Br J Pharmacol; 1996 Apr 15; 117(7):1600-6. PubMed ID: 8730760 [Abstract] [Full Text] [Related]
17. Endothelial mediators of the acetylcholine-induced relaxation of the rat femoral artery. Leung HS, Leung FP, Yao X, Ko WH, Chen ZY, Vanhoutte PM, Huang Y. Vascul Pharmacol; 2006 May 15; 44(5):299-308. PubMed ID: 16527547 [Abstract] [Full Text] [Related]
18. Comparison of the pharmacological properties of EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels. Dong H, Jiang Y, Cole WC, Triggle CR. Br J Pharmacol; 2000 Aug 15; 130(8):1983-91. PubMed ID: 10952691 [Abstract] [Full Text] [Related]