These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 22218308

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.
    Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT.
    Science; 2008 Oct 10; 322(5899):258-61. PubMed ID: 18845754
    [Abstract] [Full Text] [Related]

  • 3. Insect overwintering in a changing climate.
    Bale JS, Hayward SA.
    J Exp Biol; 2010 Mar 15; 213(6):980-94. PubMed ID: 20190123
    [Abstract] [Full Text] [Related]

  • 4. Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards.
    Clarke DN, Zani PA.
    J Exp Biol; 2012 Apr 01; 215(Pt 7):1117-27. PubMed ID: 22399656
    [Abstract] [Full Text] [Related]

  • 5. Temperature-dependent dispersal and ectotherm species' distributions in a warming world.
    Amarasekare P.
    J Anim Ecol; 2024 Apr 01; 93(4):428-446. PubMed ID: 38406823
    [Abstract] [Full Text] [Related]

  • 6. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change.
    Dahlhoff EP, Fearnley SL, Bruce DA, Gibbs AG, Stoneking R, McMillan DM, Deiner K, Smiley JT, Rank NE.
    Physiol Biochem Zool; 2008 Apr 01; 81(6):718-32. PubMed ID: 18956974
    [Abstract] [Full Text] [Related]

  • 7. The well-temperatured biologist. (American Society of Naturalists Presidential Address).
    Kingsolver JG.
    Am Nat; 2009 Dec 01; 174(6):755-68. PubMed ID: 19857158
    [Abstract] [Full Text] [Related]

  • 8. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure.
    Sheldon KS, Yang S, Tewksbury JJ.
    Ecol Lett; 2011 Dec 01; 14(12):1191-200. PubMed ID: 21978234
    [Abstract] [Full Text] [Related]

  • 9. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR, Hart RA, Jung MP, Hemmings Z, Terblanche JS.
    J Insect Physiol; 2013 Sep 01; 59(9):870-80. PubMed ID: 23806604
    [Abstract] [Full Text] [Related]

  • 10. Extending the cost-benefit model of thermoregulation: high-temperature environments.
    Vickers M, Manicom C, Schwarzkopf L.
    Am Nat; 2011 Apr 01; 177(4):452-61. PubMed ID: 21460567
    [Abstract] [Full Text] [Related]

  • 11. Why "suboptimal" is optimal: Jensen's inequality and ectotherm thermal preferences.
    Martin TL, Huey RB.
    Am Nat; 2008 Mar 01; 171(3):E102-18. PubMed ID: 18271721
    [Abstract] [Full Text] [Related]

  • 12. The future of tropical species on a warmer planet.
    Wright SJ, Muller-Landau HC, Schipper J.
    Conserv Biol; 2009 Dec 01; 23(6):1418-26. PubMed ID: 20078642
    [Abstract] [Full Text] [Related]

  • 13. The intrinsic growth rate as a predictor of population viability under climate warming.
    Amarasekare P, Coutinho RM.
    J Anim Ecol; 2013 Nov 01; 82(6):1240-53. PubMed ID: 23926903
    [Abstract] [Full Text] [Related]

  • 14. Evolution of Thermal Reaction Norms in Seasonally Varying Environments.
    Amarasekare P, Johnson C.
    Am Nat; 2017 Mar 01; 189(3):E31-E45. PubMed ID: 28221833
    [Abstract] [Full Text] [Related]

  • 15. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics.
    Vasseur DA, McCann KS.
    Am Nat; 2005 Aug 01; 166(2):184-98. PubMed ID: 16032573
    [Abstract] [Full Text] [Related]

  • 16. Impacts of climate warming on terrestrial ectotherms across latitude.
    Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR.
    Proc Natl Acad Sci U S A; 2008 May 06; 105(18):6668-72. PubMed ID: 18458348
    [Abstract] [Full Text] [Related]

  • 17. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect  species.
    Johansson F, Orizaola G, Nilsson-Örtman V.
    Sci Rep; 2020 Jun 01; 10(1):8822. PubMed ID: 32483233
    [Abstract] [Full Text] [Related]

  • 18. The impact of climate change measured at relevant spatial scales: new hope for tropical lizards.
    Logan ML, Huynh RK, Precious RA, Calsbeek RG.
    Glob Chang Biol; 2013 Oct 01; 19(10):3093-102. PubMed ID: 23661358
    [Abstract] [Full Text] [Related]

  • 19. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC, Meekan MG, Buckworth RC, Bradshaw CJ.
    Adv Mar Biol; 2009 Oct 01; 56():275-363. PubMed ID: 19895977
    [Abstract] [Full Text] [Related]

  • 20. Forecasting the viability of sea turtle eggs in a warming world.
    Pike DA.
    Glob Chang Biol; 2014 Jan 01; 20(1):7-15. PubMed ID: 24106042
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.