These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 22219638

  • 1. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L, Liu D, Liu P, Yu Y.
    Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638
    [Abstract] [Full Text] [Related]

  • 2. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V, Srivastava OP, Kirk M.
    Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670
    [Abstract] [Full Text] [Related]

  • 3. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L, Zhao WC, Yin XL, Ge JY, Bu ZG, Ge HY, Meng QF, Liu P.
    Mol Biosyst; 2012 Mar 14; 8(3):888-901. PubMed ID: 22269969
    [Abstract] [Full Text] [Related]

  • 4. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP.
    Mol Vis; 2004 Jul 19; 10():476-89. PubMed ID: 15303090
    [Abstract] [Full Text] [Related]

  • 5. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV, Cherepanov IV, Snytnikova OA, Rumyantseva YV, Kolosova NG, Tsentalovich YP, Sagdeev RZ.
    Mol Vis; 2011 Jul 19; 17():1457-67. PubMed ID: 21677790
    [Abstract] [Full Text] [Related]

  • 6. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ, David LL, Riviere MA, Wilmarth PA, Muir MS, Morton JD.
    Invest Ophthalmol Vis Sci; 2008 Mar 19; 49(3):1016-22. PubMed ID: 18326725
    [Abstract] [Full Text] [Related]

  • 7. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y, Bi H, Li N, Jin H, Yang P, Kong X, Yan S, Lu Y.
    Mol Vis; 2010 Jun 11; 16():1068-75. PubMed ID: 20596256
    [Abstract] [Full Text] [Related]

  • 8. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR, Mok HK, Wu YH, Liang SS, Hsiao CC, Huang CH, Chiou SH.
    Mol Vis; 2013 Jun 11; 19():623-37. PubMed ID: 23559856
    [Abstract] [Full Text] [Related]

  • 9. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S, Liu P, Zhang H, Li Z, Song Z, Zhang L, Chen S.
    Invest Ophthalmol Vis Sci; 2011 Jun 13; 52(7):4182-91. PubMed ID: 21436267
    [Abstract] [Full Text] [Related]

  • 10. Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map.
    Lampi KJ, Shih M, Ueda Y, Shearer TR, David LL.
    Invest Ophthalmol Vis Sci; 2002 Jan 13; 43(1):216-24. PubMed ID: 11773034
    [Abstract] [Full Text] [Related]

  • 11. Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation.
    Santhoshkumar P, Udupa P, Murugesan R, Sharma KK.
    J Biol Chem; 2008 Mar 28; 283(13):8477-85. PubMed ID: 18227073
    [Abstract] [Full Text] [Related]

  • 12. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP, Srivastava K.
    Mol Vis; 2003 Apr 16; 9():110-8. PubMed ID: 12707643
    [Abstract] [Full Text] [Related]

  • 13. Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age.
    Ueda Y, Duncan MK, David LL.
    Invest Ophthalmol Vis Sci; 2002 Jan 16; 43(1):205-15. PubMed ID: 11773033
    [Abstract] [Full Text] [Related]

  • 14. Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens.
    Yanshole LV, Cherepanov IV, Snytnikova OA, Yanshole VV, Sagdeev RZ, Tsentalovich YP.
    Mol Vis; 2013 Jan 16; 19():2196-208. PubMed ID: 24227915
    [Abstract] [Full Text] [Related]

  • 15. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts.
    Li W, Calvin HI, David LL, Wu K, McCormack AL, Zhu GP, Fu SC.
    Exp Eye Res; 2002 Sep 16; 75(3):335-46. PubMed ID: 12384096
    [Abstract] [Full Text] [Related]

  • 16. Characterization of covalent multimers of crystallins in aging human lenses.
    Srivastava OP, Kirk MC, Srivastava K.
    J Biol Chem; 2004 Mar 19; 279(12):10901-9. PubMed ID: 14623886
    [Abstract] [Full Text] [Related]

  • 17. Selective association of crystallins with lens 'native' membrane during dynamic cataractogenesis.
    Cenedella RJ, Fleschner CR.
    Curr Eye Res; 1992 Aug 19; 11(8):801-15. PubMed ID: 1424724
    [Abstract] [Full Text] [Related]

  • 18. Measurement of absolute abundance of crystallins in human and αA N101D transgenic mouse lenses using 15N-labeled crystallin standards.
    Halverson-Kolkind KA, Caputo N, Lampi KJ, Srivastava O, David LL.
    Exp Eye Res; 2024 Nov 19; 248():110115. PubMed ID: 39368693
    [Abstract] [Full Text] [Related]

  • 19. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression.
    Posner M, Hawke M, Lacava C, Prince CJ, Bellanco NR, Corbin RW.
    Mol Vis; 2008 Apr 25; 14():806-14. PubMed ID: 18449354
    [Abstract] [Full Text] [Related]

  • 20. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.
    Chen Y, Yi L, Yan G, Fang Y, Jang Y, Wu X, Zhou X, Wei L.
    Curr Eye Res; 2010 Jul 25; 35(7):620-30. PubMed ID: 20597648
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.