These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
229 related items for PubMed ID: 22219638
41. Differential proteomic analyses of cataracts from rat models of type 1 and 2 diabetes. Su S, Leng F, Guan L, Zhang L, Ge J, Wang C, Chen S, Liu P. Invest Ophthalmol Vis Sci; 2014 Nov 18; 55(12):7848-61. PubMed ID: 25406277 [Abstract] [Full Text] [Related]
42. Calcium activated proteolysis and protein modification in the U18666A cataract. Chandrasekher G, Cenedella RJ. Exp Eye Res; 1993 Dec 18; 57(6):737-45. PubMed ID: 8150025 [Abstract] [Full Text] [Related]
43. Shotgun proteomic analysis of S-thiolation sites of guinea pig lens nuclear crystallins following oxidative stress in vivo. Giblin FJ, David LL, Wilmarth PA, Leverenz VR, Simpanya MF. Mol Vis; 2013 Dec 18; 19():267-80. PubMed ID: 23401655 [Abstract] [Full Text] [Related]
44. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Su SP, McArthur JD, Andrew Aquilina J. Exp Eye Res; 2010 Jul 18; 91(1):97-103. PubMed ID: 20433829 [Abstract] [Full Text] [Related]
45. Modifications in lens protein biosynthesis signal the initiation of cataracts induced by buthionine sulfoximine in mice. Calvin HI, Wu JX, Viswanadhan K, Fu SC. Exp Eye Res; 1996 Oct 18; 63(4):357-68. PubMed ID: 8944543 [Abstract] [Full Text] [Related]
46. Anti-chaperone betaA3/A1(102-117) peptide interacting sites in human alphaB-crystallin. Rao G, Santhoshkumar P, Sharma KK. Mol Vis; 2008 Mar 26; 14():666-74. PubMed ID: 18401461 [Abstract] [Full Text] [Related]
47. Tracking pathology with proteomics: identification of in vivo degradation products of alphaB-crystallin. Colvis CM, Duglas-Tabor Y, Werth KB, Vieira NE, Kowalak JA, Janjani A, Yergey AL, Garland DL. Electrophoresis; 2000 Jun 26; 21(11):2219-27. PubMed ID: 10892732 [Abstract] [Full Text] [Related]
48. Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach. Chiou SH, Huang CH, Lee IL, Wang YT, Liu NY, Tsay YG, Chen YJ. Mol Vis; 2010 Feb 24; 16():294-302. PubMed ID: 20182557 [Abstract] [Full Text] [Related]
49. αA-crystallin peptide SDRDKFVIFLDVKHF accumulating in aging lens impairs the function of α-crystallin and induces lens protein aggregation. Santhoshkumar P, Raju M, Sharma KK. PLoS One; 2011 Apr 28; 6(4):e19291. PubMed ID: 21552534 [Abstract] [Full Text] [Related]
50. Lens proteome map and alpha-crystallin profile of the catfish Rita rita. Mohanty BP, Bhattacharjee S, Das MK. Indian J Biochem Biophys; 2011 Feb 28; 48(1):35-41. PubMed ID: 21469600 [Abstract] [Full Text] [Related]
54. Accumulation and aberrant modifications of alpha-crystallins in anterior polar cataracts. Hwang KH, Lee EH, Jho EH, Kim JH, Lee DH, Chung SK, Kim EK, Joo CK. Yonsei Med J; 2004 Feb 29; 45(1):73-80. PubMed ID: 15004872 [Abstract] [Full Text] [Related]
55. Mass measurements of C-terminally truncated alpha-crystallins from two-dimensional gels identify Lp82 as a major endopeptidase in rat lens. Ueda Y, Fukiage C, Shih M, Shearer TR, David LL. Mol Cell Proteomics; 2002 May 29; 1(5):357-65. PubMed ID: 12118077 [Abstract] [Full Text] [Related]
56. Crystallin proteins in lenses of hereditary cataractous rat, ICR/f. Takeuchi N, Kamei A. Biol Pharm Bull; 2000 Mar 29; 23(3):283-90. PubMed ID: 10726880 [Abstract] [Full Text] [Related]
57. BetaB2-crystallin undergoes extensive truncation during aging in human lenses. Srivastava OP, Srivastava K. Biochem Biophys Res Commun; 2003 Jan 31; 301(1):44-9. PubMed ID: 12535638 [Abstract] [Full Text] [Related]
58. Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins. Tiwary E, Hegde S, Purushotham S, Deivanayagam C, Srivastava O. PLoS One; 2015 Jan 31; 10(12):e0144621. PubMed ID: 26657544 [Abstract] [Full Text] [Related]
59. Proteome analysis of lens epithelia, fibers, and the HLE B-3 cell line. Wang-Su ST, McCormack AL, Yang S, Hosler MR, Mixon A, Riviere MA, Wilmarth PA, Andley UP, Garland D, Li H, David LL, Wagner BJ. Invest Ophthalmol Vis Sci; 2003 Nov 31; 44(11):4829-36. PubMed ID: 14578405 [Abstract] [Full Text] [Related]
60. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses. Thampi P, Hassan A, Smith JB, Abraham EC. Invest Ophthalmol Vis Sci; 2002 Oct 31; 43(10):3265-72. PubMed ID: 12356833 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]