These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 22222456
61. PROLIX: rapid mining of protein-ligand interactions in large crystal structure databases. Weisel M, Bitter HM, Diederich F, So WV, Kondru R. J Chem Inf Model; 2012 Jun 25; 52(6):1450-61. PubMed ID: 22582806 [Abstract] [Full Text] [Related]
62. Enthalpy/entropy compensation effects from cavity desolvation underpin broad ligand binding selectivity for rat odorant binding protein 3. Portman KL, Long J, Carr S, Briand L, Winzor DJ, Searle MS, Scott DJ. Biochemistry; 2014 Apr 15; 53(14):2371-9. PubMed ID: 24665925 [Abstract] [Full Text] [Related]
63. Water PMF for predicting the properties of water molecules in protein binding site. Zheng M, Li Y, Xiong B, Jiang H, Shen J. J Comput Chem; 2013 Mar 15; 34(7):583-92. PubMed ID: 23114863 [Abstract] [Full Text] [Related]
64. Accounting for water molecules in drug design. Wong SE, Lightstone FC. Expert Opin Drug Discov; 2011 Jan 15; 6(1):65-74. PubMed ID: 22646827 [Abstract] [Full Text] [Related]
65. DRoP: Automated detection of conserved solvent-binding sites on proteins. Kearney BM, Schwabe M, Marcus KC, Roberts DM, Dechene M, Swartz P, Mattos C. Proteins; 2020 Jan 15; 88(1):152-165. PubMed ID: 31294888 [Abstract] [Full Text] [Related]
66. Experimental and computational mapping of the binding surface of a crystalline protein. English AC, Groom CR, Hubbard RE. Protein Eng; 2001 Jan 15; 14(1):47-59. PubMed ID: 11287678 [Abstract] [Full Text] [Related]
67. The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. Spyrakis F, Ahmed MH, Bayden AS, Cozzini P, Mozzarelli A, Kellogg GE. J Med Chem; 2017 Aug 24; 60(16):6781-6827. PubMed ID: 28475332 [Abstract] [Full Text] [Related]
68. WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes. García-Sosa AT, Mancera RL, Dean PM. J Mol Model; 2003 Jun 24; 9(3):172-82. PubMed ID: 12756610 [Abstract] [Full Text] [Related]
69. Explicit treatment of water molecules in data-driven protein-protein docking: the solvated HADDOCKing approach. Kastritis PL, van Dijk AD, Bonvin AM. Methods Mol Biol; 2012 Jun 24; 819():355-74. PubMed ID: 22183547 [Abstract] [Full Text] [Related]
70. Mapping Water Thermodynamics on Drug Candidates via Molecular Building Blocks: a Strategy to Improve Ligand Design and Rationalize SAR. Hüfner-Wulsdorf T, Klebe G. J Med Chem; 2021 Apr 22; 64(8):4662-4676. PubMed ID: 33797902 [Abstract] [Full Text] [Related]
71. Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery. Cappel D, Sherman W, Beuming T. Curr Top Med Chem; 2017 Apr 22; 17(23):2586-2598. PubMed ID: 28413953 [Abstract] [Full Text] [Related]
72. Hydration in drug design. 2. Influence of local site surface shape on water binding. Poornima CS, Dean PM. J Comput Aided Mol Des; 1995 Dec 22; 9(6):513-20. PubMed ID: 8789193 [Abstract] [Full Text] [Related]
73. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif. Ahmed MH, Spyrakis F, Cozzini P, Tripathi PK, Mozzarelli A, Scarsdale JN, Safo MA, Kellogg GE. PLoS One; 2011 Dec 22; 6(9):e24712. PubMed ID: 21961043 [Abstract] [Full Text] [Related]
74. Roles for ordered and bulk solvent in ligand recognition and docking in two related cavities. Barelier S, Boyce SE, Fish I, Fischer M, Goodin DB, Shoichet BK. PLoS One; 2013 Dec 22; 8(7):e69153. PubMed ID: 23874896 [Abstract] [Full Text] [Related]
75. Thermodynamic aspects of hydrophobicity and biological QSAR. Kim KH. J Comput Aided Mol Des; 2001 Apr 22; 15(4):367-80. PubMed ID: 11349818 [Abstract] [Full Text] [Related]
76. A solvated ligand rotamer approach and its application in computational protein design. Huang X, Yang J, Zhu Y. J Mol Model; 2013 Mar 22; 19(3):1355-67. PubMed ID: 23192355 [Abstract] [Full Text] [Related]
77. On the Implication of Water on Fragment-to-Ligand Growth in Kinase Binding Thermodynamics. Wienen-Schmidt B, Wulsdorf T, Jonker HRA, Saxena K, Kudlinzki D, Linhard V, Sreeramulu S, Heine A, Schwalbe H, Klebe G. ChemMedChem; 2018 Sep 19; 13(18):1988-1996. PubMed ID: 30058283 [Abstract] [Full Text] [Related]
78. Hydration in protein crystallography. Schoenborn BP, Garcia A, Knott R. Prog Biophys Mol Biol; 1995 Sep 19; 64(2-3):105-19. PubMed ID: 8987380 [Abstract] [Full Text] [Related]
79. Paradoxically, Most Flexible Ligand Binds Most Entropy-Favored: Intriguing Impact of Ligand Flexibility and Solvation on Drug-Kinase Binding. Wienen-Schmidt B, Jonker HRA, Wulsdorf T, Gerber HD, Saxena K, Kudlinzki D, Sreeramulu S, Parigi G, Luchinat C, Heine A, Schwalbe H, Klebe G. J Med Chem; 2018 Jul 26; 61(14):5922-5933. PubMed ID: 29909615 [Abstract] [Full Text] [Related]
80. A Perspective on Water Site Prediction Methods for Structure Based Drug Design. Graves AP, Wall ID, Edge CM, Woolven JM, Cui G, Le Gall A, Hong X, Raha K, Manas ES. Curr Top Med Chem; 2017 Jul 26; 17(23):2599-2616. PubMed ID: 28460610 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]