These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 22226461

  • 1. Iron and protein biofortification of cassava: lessons learned.
    Leyva-Guerrero E, Narayanan NN, Ihemere U, Sayre RT.
    Curr Opin Biotechnol; 2012 Apr; 23(2):257-64. PubMed ID: 22226461
    [Abstract] [Full Text] [Related]

  • 2. The BioCassava plus program: biofortification of cassava for sub-Saharan Africa.
    Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J, Fregene M, Gruissem W, Mallowa S, Manary M, Maziya-Dixon B, Mbanaso A, Schachtman DP, Siritunga D, Taylor N, Vanderschuren H, Zhang P.
    Annu Rev Plant Biol; 2011 Apr; 62():251-72. PubMed ID: 21526968
    [Abstract] [Full Text] [Related]

  • 3. Biofortification of essential nutritional compounds and trace elements in rice and cassava.
    Sautter C, Poletti S, Zhang P, Gruissem W.
    Proc Nutr Soc; 2006 May; 65(2):153-9. PubMed ID: 16672076
    [Abstract] [Full Text] [Related]

  • 4. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D, Sayre R.
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [Abstract] [Full Text] [Related]

  • 5. Impact of genotype and cooking style on the content, retention, and bioacessibility of β-carotene in biofortified cassava (Manihot esculenta Crantz) conventionally bred in Brazil.
    Berni P, Chitchumroonchokchai C, Canniatti-Brazaca SG, De Moura FF, Failla ML.
    J Agric Food Chem; 2014 Jul 16; 62(28):6677-86. PubMed ID: 24970565
    [Abstract] [Full Text] [Related]

  • 6. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).
    van Rijssen FW, Morris EJ, Eloff JN.
    J Agric Food Chem; 2013 Sep 04; 61(35):8333-9. PubMed ID: 23899040
    [Abstract] [Full Text] [Related]

  • 7. Potential of cassava clones enriched with β-carotene and lycopene for zinc biofortification under different soil Zn conditions.
    Corguinha APB, Carvalho CA, de Souza GA, de Carvalho TS, Vieira EA, Fialho JF, Guilherme LRG.
    J Sci Food Agric; 2019 Jan 30; 99(2):666-674. PubMed ID: 29962086
    [Abstract] [Full Text] [Related]

  • 8. Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel sink for protein.
    Abhary M, Siritunga D, Stevens G, Taylor NJ, Fauquet CM.
    PLoS One; 2011 Jan 25; 6(1):e16256. PubMed ID: 21283593
    [Abstract] [Full Text] [Related]

  • 9. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
    Narayanan NN, Ihemere U, Ellery C, Sayre RT.
    PLoS One; 2011 Jan 25; 6(7):e21996. PubMed ID: 21799761
    [Abstract] [Full Text] [Related]

  • 10. Stacking disease resistance and mineral biofortification in cassava varieties to enhance yields and consumer health.
    Narayanan N, Beyene G, Chauhan RD, Grusak MA, Taylor NJ.
    Plant Biotechnol J; 2021 Apr 25; 19(4):844-854. PubMed ID: 33190345
    [Abstract] [Full Text] [Related]

  • 11. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin.
    Narayanan N, Beyene G, Chauhan RD, Gaitán-Solís E, Gehan J, Butts P, Siritunga D, Okwuonu I, Woll A, Jiménez-Aguilar DM, Boy E, Grusak MA, Anderson P, Taylor NJ.
    Nat Biotechnol; 2019 Feb 25; 37(2):144-151. PubMed ID: 30692693
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch.
    Beyene G, Solomon FR, Chauhan RD, Gaitán-Solis E, Narayanan N, Gehan J, Siritunga D, Stevens RL, Jifon J, Van Eck J, Linsler E, Gehan M, Ilyas M, Fregene M, Sayre RT, Anderson P, Taylor NJ, Cahoon EB.
    Plant Biotechnol J; 2018 Jun 25; 16(6):1186-1200. PubMed ID: 29193665
    [Abstract] [Full Text] [Related]

  • 14. Cassava biology and physiology.
    El-Sharkawy MA.
    Plant Mol Biol; 2004 Nov 25; 56(4):481-501. PubMed ID: 15669146
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.
    Narayanan N, Beyene G, Chauhan RD, Gaitán-Solis E, Grusak MA, Taylor N, Anderson P.
    Plant Sci; 2015 Nov 25; 240():170-81. PubMed ID: 26475197
    [Abstract] [Full Text] [Related]

  • 17. Iron Biofortification and Homeostasis in Transgenic Cassava Roots Expressing the Algal Iron Assimilatory Gene, FEA1.
    Ihemere UE, Narayanan NN, Sayre RT.
    Front Plant Sci; 2012 Nov 25; 3():171. PubMed ID: 22993514
    [Abstract] [Full Text] [Related]

  • 18. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.
    Liu S, Zainuddin IM, Vanderschuren H, Doughty J, Beeching JR.
    Plant Mol Biol; 2017 May 25; 94(1-2):185-195. PubMed ID: 28315989
    [Abstract] [Full Text] [Related]

  • 19. The future of cassava in the era of biotechnology in Southern Africa.
    Otun S, Escrich A, Achilonu I, Rauwane M, Lerma-Escalera JA, Morones-Ramírez JR, Rios-Solis L.
    Crit Rev Biotechnol; 2023 Jun 25; 43(4):594-612. PubMed ID: 35369831
    [Abstract] [Full Text] [Related]

  • 20. The Cassava Source-Sink project: opportunities and challenges for crop improvement by metabolic engineering.
    Sonnewald U, Fernie AR, Gruissem W, Schläpfer P, Anjanappa RB, Chang SH, Ludewig F, Rascher U, Muller O, van Doorn AM, Rabbi IY, Zierer W.
    Plant J; 2020 Aug 25; 103(5):1655-1665. PubMed ID: 32502321
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.