These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Structural requirements for effective oximes--evaluation of kinetic in vitro data with phosphylated human AChE and structurally different oximes. Worek F, Wille T, Koller M, Thiermann H. Chem Biol Interact; 2013 Mar 25; 203(1):125-8. PubMed ID: 22827894 [Abstract] [Full Text] [Related]
23. Effect of organophosphorus hydrolysing enzymes on obidoxime-induced reactivation of organophosphate-inhibited human acetylcholinesterase. Herkenhoff S, Szinicz L, Rastogi VK, Cheng TC, DeFrank JJ, Worek F. Arch Toxicol; 2004 Jun 25; 78(6):338-43. PubMed ID: 14985944 [Abstract] [Full Text] [Related]
24. Potential of two new oximes in reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by organophosphate compounds: an in vitro study. Costa MD, Freitas ML, Soares FA, Carratu VS, Brandão R. Toxicol In Vitro; 2011 Dec 25; 25(8):2120-3. PubMed ID: 21983245 [Abstract] [Full Text] [Related]
25. The oximes HI-6 and MMB-4 fail to reactivate soman-inhibited human and guinea pig AChE: A kinetic in vitro study. Worek F, Thiermann H, Wille T. Toxicol Lett; 2018 Sep 01; 293():216-221. PubMed ID: 28993240 [Abstract] [Full Text] [Related]
26. An in vitro comparative study on the reactivation of nerve agent-inhibited guinea pig and human acetylcholinesterases by oximes. Luo C, Tong M, Chilukuri N, Brecht K, Maxwell DM, Saxena A. Biochemistry; 2007 Oct 23; 46(42):11771-9. PubMed ID: 17900152 [Abstract] [Full Text] [Related]
27. Comparison of in vitro potency of oximes (pralidoxime, obidoxime, HI-6) to reactivate sarin-inhibited acetylcholinesterase in various parts of pig brain. Kuca K, Cabal J, Kassa J, Jun D, Hrabinová M. J Appl Toxicol; 2005 Oct 23; 25(4):271-6. PubMed ID: 16021679 [Abstract] [Full Text] [Related]
28. Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors. Herkert NM, Eckert S, Eyer P, Bumm R, Weber G, Thiermann H, Worek F. Toxicology; 2008 Apr 18; 246(2-3):188-92. PubMed ID: 18304715 [Abstract] [Full Text] [Related]
29. Comparison of human and guinea pig acetylcholinesterase sequences and rates of oxime-assisted reactivation. Cadieux CL, Broomfield CA, Kirkpatrick MG, Kazanski ME, Lenz DE, Cerasoli DM. Chem Biol Interact; 2010 Sep 06; 187(1-3):229-33. PubMed ID: 20433814 [Abstract] [Full Text] [Related]
30. In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes--K027, K005, K033 and K048. Kuca K, Cabal J. Cent Eur J Public Health; 2004 Mar 06; 12 Suppl():S59-61. PubMed ID: 15141981 [Abstract] [Full Text] [Related]
31. Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: Analysis of reactivation and inhibition kinetics in vitro. Horn G, de Koning MC, van Grol M, Thiermann H, Worek F. Toxicol Lett; 2018 Dec 15; 299():218-225. PubMed ID: 30312685 [Abstract] [Full Text] [Related]
32. In vitro kinetic interactions of pyridostigmine, physostigmine and soman with erythrocyte and muscle acetylcholinesterase from different species. Herkert NM, Thiermann H, Worek F. Toxicol Lett; 2011 Sep 25; 206(1):41-6. PubMed ID: 21414391 [Abstract] [Full Text] [Related]
33. Oxime-mediated in vitro reactivation kinetic analysis of organophosphates-inhibited human and electric eel acetylcholinesterase. Sahu AK, Sharma R, Gupta B, Musilek K, Kuca K, Acharya J, Ghosh KK. Toxicol Mech Methods; 2016 Jun 25; 26(5):319-26. PubMed ID: 27101948 [Abstract] [Full Text] [Related]
34. Potency of several oximes to reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon in vitro. Jun D, Musilova L, Kuca K, Kassa J, Bajgar J. Chem Biol Interact; 2008 Sep 25; 175(1-3):421-4. PubMed ID: 18617161 [Abstract] [Full Text] [Related]
35. Restoration of nerve agent inhibited muscle force production in human intercostal muscle strips with HI 6. Seeger T, Niessen KV, Langer P, Gerhardus J, Worek F, Friess H, Bumm R, Mihaljevic AL, Thiermann H. Toxicol Lett; 2011 Sep 25; 206(1):72-6. PubMed ID: 21803135 [Abstract] [Full Text] [Related]
36. Bisquaternary oximes as reactivators of tabun-inhibited human brain cholinesterases: an in vitro study. Kuca K, Jun D, Cabal J, Musilova L. Basic Clin Pharmacol Toxicol; 2007 Jul 25; 101(1):25-8. PubMed ID: 17577312 [Abstract] [Full Text] [Related]
37. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Worek F, Thiermann H, Szinicz L, Eyer P. Biochem Pharmacol; 2004 Dec 01; 68(11):2237-48. PubMed ID: 15498514 [Abstract] [Full Text] [Related]
38. Inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds: pig versus minipig acetylcholinesterase. Worek F, Aurbek N, Wetherell J, Pearce P, Mann T, Thiermann H. Toxicology; 2008 Feb 03; 244(1):35-41. PubMed ID: 18054823 [Abstract] [Full Text] [Related]
39. In vitro reactivation potency of some acetylcholinesterase reactivators against sarin- and cyclosarin-induced inhibitions. Kuca K, Cabal J, Jun D, Kassa J, Bartosová L, Kunesová G. J Appl Toxicol; 2005 Feb 03; 25(4):296-300. PubMed ID: 16025528 [Abstract] [Full Text] [Related]
40. In silico pharmacophore model for tabun-inhibited acetylcholinesterase reactivators: a study of their stereoelectronic properties. Bhattacharjee AK, Kuca K, Musilek K, Gordon RK. Chem Res Toxicol; 2010 Jan 03; 23(1):26-36. PubMed ID: 20028185 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]