These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 222335
21. Redox transformations in ferrimyoglobin induced by radiation-generated free radicals in aqueous solution. Whitburn KD, Shieh JJ, Sellers RM, Hoffman MZ, Taub IA. J Biol Chem; 1982 Feb 25; 257(4):1860-9. PubMed ID: 7056748 [No Abstract] [Full Text] [Related]
22. Temperature-jump studies on formate binding to methemoglobin and metmyoglobin. Okonjo KO, Ilgenfritz G. Arch Biochem Biophys; 1978 Aug 25; 189(2):499-507. PubMed ID: 30414 [No Abstract] [Full Text] [Related]
23. EPR characterization of alcohol complexes of ferric myoglobin and hemoglobin. Brill AS, Fiamingo FG, Hampton DA. J Inorg Biochem; 1986 Aug 25; 28(2-3):137-43. PubMed ID: 3027252 [Abstract] [Full Text] [Related]
24. Evaluation of dipolar nuclear magnetic resonance shifts in low-spin hemin systems: ferricytochrome c and metmyoglobin cyanide. Horrocks WD, Greenberg ES. Biochim Biophys Acta; 1973 Sep 21; 322(1):38-44. PubMed ID: 4355311 [No Abstract] [Full Text] [Related]
25. Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction. Gunther MR. Free Radic Biol Med; 2004 Jun 01; 36(11):1345-54. PubMed ID: 15135170 [Abstract] [Full Text] [Related]
26. Nuclear magnetic resonance studies of hemoprotein. Proton hyperfine shifts and structural characterization of the different heme environments in methemoglobin and metmyoglobin. Morishima I, Neya S, Inubushi T, Yonezawa T, Iizuka T. Biochim Biophys Acta; 1978 Jun 21; 534(2):307-16. PubMed ID: 667106 [Abstract] [Full Text] [Related]
27. A pulse-radiolysis study of cytochrome c3. Kinetics of the reduction of cytochrome c3 by methyl viologen radicals and the characterisation of the redox properties of cytochrome c3 from Desulfovibrio vulgaris (Hildenborough). Van Leeuwen JW, Van Dijk C, Grande HJ, Veeger C. Eur J Biochem; 1982 Oct 21; 127(3):631-7. PubMed ID: 6293820 [Abstract] [Full Text] [Related]
28. Ionic strength dependence of the electric dissociation field effect. Investigation of 2,6-dinitrophenol and application to the acid-alkaline transition of metmyoglobin and methemoglobin. Bräunig R, Gushimana Y, Ilgenfritz G. Biophys Chem; 1987 May 09; 26(2-3):181-91. PubMed ID: 3607227 [Abstract] [Full Text] [Related]
29. Reduction of ferrylmyoglobin to metmyoglobin by quinonoid compounds. Buffinton G, Cadenas E. Chem Biol Interact; 1988 May 09; 66(3-4):233-50. PubMed ID: 3396122 [Abstract] [Full Text] [Related]
30. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin. Goldstein S, Merenyi G, Samuni A. J Am Chem Soc; 2004 Dec 08; 126(48):15694-701. PubMed ID: 15571391 [Abstract] [Full Text] [Related]
31. An ergothioneine-dependent oxidation of reduced pyridine nucleotides by methemoglobin and metmyoglobin. Stimulation by thyroxine. KLEBANOFF SJ. Biochim Biophys Acta; 1962 Nov 05; 64():554-6. PubMed ID: 14033313 [No Abstract] [Full Text] [Related]
34. The interaction of alcohol radicals with human hemoglobin. I. Spectral properties of hemoglobin in the visible range. Puchała M. Radiat Environ Biophys; 1994 Nov 05; 33(4):325-39. PubMed ID: 7708906 [Abstract] [Full Text] [Related]
35. The oxidation of ferrocytochrome c by Br2-, (SCN)2-, N3 and OH radicals studied by pulsed-electron and gamma-ray radiolysis. Seki H, Imamura M. Biochim Biophys Acta; 1981 Mar 12; 635(1):81-9. PubMed ID: 6260165 [Abstract] [Full Text] [Related]