These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


327 related items for PubMed ID: 22234998

  • 1. Chemical quenching of singlet oxygen by carotenoids in plants.
    Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M.
    Plant Physiol; 2012 Mar; 158(3):1267-78. PubMed ID: 22234998
    [Abstract] [Full Text] [Related]

  • 2. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.
    Tardy F, Havaux M.
    J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663
    [Abstract] [Full Text] [Related]

  • 3. Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein Lhcb5.
    Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R.
    J Phys Chem B; 2013 Sep 26; 117(38):11337-48. PubMed ID: 23786371
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants.
    Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M.
    Proc Natl Acad Sci U S A; 2012 Apr 03; 109(14):5535-40. PubMed ID: 22431637
    [Abstract] [Full Text] [Related]

  • 6. Construction and characterization of genetically modified synechocystis sp. PCC 6803 photosystem II core complexes containing carotenoids with shorter pi-conjugation than beta-carotene.
    Bautista JA, Tracewell CA, Schlodder E, Cunningham FX, Brudvig GW, Diner BA.
    J Biol Chem; 2005 Nov 18; 280(46):38839-50. PubMed ID: 16159754
    [Abstract] [Full Text] [Related]

  • 7. Singlet oxygen and non-photochemical quenching contribute to oxidation of the plastoquinone-pool under high light stress in Arabidopsis.
    Kruk J, Szymańska R.
    Biochim Biophys Acta; 2012 May 18; 1817(5):705-10. PubMed ID: 22365927
    [Abstract] [Full Text] [Related]

  • 8. Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana by time-resolved fluorometric analysis.
    Steffen R, Eckert HJ, Kelly AA, Dörmann P, Renger G.
    Biochemistry; 2005 Mar 08; 44(9):3123-33. PubMed ID: 15736922
    [Abstract] [Full Text] [Related]

  • 9. Lutein-mediated photoprotection of photosynthetic machinery in Arabidopsis thaliana exposed to chronic low ultraviolet-B radiation.
    Biswas DK, Ma BL, Xu H, Li Y, Jiang G.
    J Plant Physiol; 2020 May 08; 248():153160. PubMed ID: 32283468
    [Abstract] [Full Text] [Related]

  • 10. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants.
    Harvaux M, Kloppstech K.
    Planta; 2001 Oct 08; 213(6):953-66. PubMed ID: 11722132
    [Abstract] [Full Text] [Related]

  • 11. Differential Roles of Carotenes and Xanthophylls in Photosystem I Photoprotection.
    Cazzaniga S, Bressan M, Carbonera D, Agostini A, Dall'Osto L.
    Biochemistry; 2016 Jul 05; 55(26):3636-49. PubMed ID: 27290879
    [Abstract] [Full Text] [Related]

  • 12. The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection.
    Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall'Osto L.
    Plant Physiol; 2012 Aug 05; 159(4):1745-58. PubMed ID: 23029671
    [Abstract] [Full Text] [Related]

  • 13. Carotenoids, versatile components of oxygenic photosynthesis.
    Domonkos I, Kis M, Gombos Z, Ughy B.
    Prog Lipid Res; 2013 Oct 05; 52(4):539-61. PubMed ID: 23896007
    [Abstract] [Full Text] [Related]

  • 14. Zeaxanthin and Echinenone Protect the Repair of Photosystem II from Inhibition by Singlet Oxygen in Synechocystis sp. PCC 6803.
    Kusama Y, Inoue S, Jimbo H, Takaichi S, Sonoike K, Hihara Y, Nishiyama Y.
    Plant Cell Physiol; 2015 May 05; 56(5):906-16. PubMed ID: 25663484
    [Abstract] [Full Text] [Related]

  • 15. Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress.
    Caliandro R, Nagel KA, Kastenholz B, Bassi R, Li Z, Niyogi KK, Pogson BJ, Schurr U, Matsubara S.
    Plant Cell Environ; 2013 Feb 05; 36(2):438-53. PubMed ID: 22860767
    [Abstract] [Full Text] [Related]

  • 16. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability.
    Lokstein H, Tian L, Polle JE, DellaPenna D.
    Biochim Biophys Acta; 2002 Feb 15; 1553(3):309-19. PubMed ID: 11997140
    [Abstract] [Full Text] [Related]

  • 17. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae.
    Havaux M, Dall'osto L, Bassi R.
    Plant Physiol; 2007 Dec 15; 145(4):1506-20. PubMed ID: 17932304
    [Abstract] [Full Text] [Related]

  • 18. Leaf Age-Dependent Photosystem II Photochemistry and Oxidative Stress Responses to Drought Stress in Arabidopsis thaliana Are Modulated by Flavonoid Accumulation.
    Sperdouli I, Moustaka J, Ouzounidou G, Moustakas M.
    Molecules; 2021 Jul 08; 26(14):. PubMed ID: 34299433
    [Abstract] [Full Text] [Related]

  • 19. Quenching of chlorophyll triplet states by carotenoids in reconstituted Lhca4 subunit of peripheral light-harvesting complex of photosystem I.
    Carbonera D, Agostini G, Morosinotto T, Bassi R.
    Biochemistry; 2005 Jun 14; 44(23):8337-46. PubMed ID: 15938623
    [Abstract] [Full Text] [Related]

  • 20. Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I.
    Croce R, Mozzo M, Morosinotto T, Romeo A, Hienerwadel R, Bassi R.
    Biochemistry; 2007 Mar 27; 46(12):3846-55. PubMed ID: 17326666
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.